中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
復形和Cohen-Macaulay性質(英文版)

包郵 復形和Cohen-Macaulay性質(英文版)

出版社:科學出版社出版時間:2021-01-01
開本: 16開 頁數: 254
本類榜單:自然科學銷量榜
中 圖 價:¥101.1(7.9折) 定價  ¥128.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

復形和Cohen-Macaulay性質(英文版) 版權信息

  • ISBN:9787030703026
  • 條形碼:9787030703026 ; 978-7-03-070302-6
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

復形和Cohen-Macaulay性質(英文版) 內容簡介

本書包含組合交換代數近幾年來的一些主要研究成果,選題圍繞單純復形、代數復形以及Cohen-Macaulay性質展開,其中的CM性質是交換代數中很為核心的研究課題。全書共分為7章。

復形和Cohen-Macaulay性質(英文版) 目錄

Contents
Preface
Notations
Chapter 1 Preliminaries on Cohen-Macaulay Rings and Modules 1
1.1 Jacobson radical and NAK Lemma 2
1.2 Modules with finite lengths 3
1.3 On graded rings and minimal graded free solution 6
1.4 Cohen-Macaulay rings and Cohen-Macaulay Modules 11
1.4.1 Dimension, height and Krull’s PI theorem 11
1.4.2 Depth Lemma and depthI(M) 14
1.4.3 Local rings: Krull dimension and a system of parameters 17
1.4.4 Cohen-Macaulay modules and Cohen-Macaulay rings: local case 22
1.4.5 Cohen-Macaulay rings: non-local case 26
1.4.6 Cohen-Macaulay rings: graded case 28
1.4. 7 Gorenstein rings 34
1.5 Sequentially Cohen-Macaulay modu1es 35
Chapter 2 Abstract Simplicial Complexes 40
2.1 Definitions, fundamiental properties and examples 40
2.1.1 Abstract simplex and abstract simplicial complex*40
2.1.2 0ther notations and symbols on a simplicial complex * 41
2.1.3 Fundamental operations on sub-complexes and geometric realization of an abstract simplicial complex 42
2.2 The facet idea1I(*) and Stanley-Reisner ideal I*of a simplicial complex * 47
2.2.1 Monomial ideals and ideal operations 47
2.2.2 The Stanley-Reisner (nonface) ideal I* and facet ideal I* 47
2.2.3 The Alexander dual simplicial complex * of*and related properties 48
2.2.4 Square-free monomial ideal I: its nonface complex, facet complex; I* and f-ideals 54
2.3 Relative simplicial complexes and relative nonface ideals 55
Chapter 3 Shellable Simplicial Complexes 57
3.1 Destriction and examples 57
3.2 Restriction maps and Rearrangement Lemmas 60
3.3 (r,s)-skeleton * 64
3.4 Shifted, vertex-decomposable and shellable conditions for a simplicial complex 66
3.5 Shellable and k-decomposable 69
Chapter 4 Chain Complex Reduced from a Simplicial Complex and Koszul Complexes 73
4.1 The chain complex reduced from an abstract simplicial complex and reduced homology groups 74
4.2 Koszul complexes of lengths 1 or 2 79
4.3 Koszul complexes of geueral length 80
4.3.1 Exterior algebra constructed from a module 80
4.3.2 Koszul complexes: two commonly used definitions 81
4.4 Koszul complexes: a S田nmary of main results 83
4.5 Other resolutions and complexes of monomial ideals 84
4.5.1 The Taylor resolution 84
4.5.2 The Scarf complex 86
4.5.3 The Lyubeznik resolutions 89
Chapter 5 (Sequentially) Cohen-Macaulay Simplicial Complexes and Graphs 91
5.1 Cohen-Macaulay simplicial complexes 92
5.1.1 Fundamental properties and characterizations 92
5.1.2 Connected in codimension one 97
5.1.3 Minimal Cohen-Macaulay simplicial complexes and shelled over 100
5.2 Matroid complexes 104
5.3 Pure shellable, constructible, and Cohen-Macaulay 107
5.4 A graded ideal with linear quotients and shellable complexes 111
5.4.1 A graded id兇i with linear quotients 111
5.4.2 Shellable complexes and monomial ideals having linear quotients 115
5.4.3 Powers of edge ideals of graphs and regularity 118
5.4.4 A polymatroidal monomial ideal has linear quotients 119
5.4.5 Strongly shellable simplicial complexes 120
5.5 sCM simplicial complexes and sCM graded modules 121
5.6 Clique complex *, edge ideal I(G) and cover ideal Ic(G) 123
5. 7 Vertex-decomposable graphs a且d shellable graphs 124
5.8 Minimal verex covers and standard irredundant primary decomposition of I(G) 127
5.9 Cohen-Macaulay graphs and well-covered graphs 129
5.10 Shellable clutters 131
5.10.1 Clutters with the free vertex property 132
5.10.2 Chordal clutters 133
5.11 Some particular classes of graphs 133
5.11.1 Bipartite graphs 133
5.11.2 Boolean graphs are Cohen-Macaulay 138
5.11.3 Cactus graphs and classes of vertex-decomposable graphs 143
5.11.4 Cameron-Walker graphs 146
5.11.5 Chordal graphs 147
5.11.6 F-simplicial complexes and f-ideals of kind (n,d) 150
5.11.7 Gap-free graphs and related H-free graphs 174
5.11.8 Graphs whose complements are r-partite 176
5.11.9 Graph expansions and graph blow ups 185
5.11.10 Interlacing graphs * and triangular graphs * 188
5.11.11 Vertex clique-whiskered graphs * and their generalizations * 189
5.11.12 1-decomposable graphs 202
Chapter 6 Shellable Simplicial Complexes from Posets 204
6.1 Preliminaries 204
6.2 A bounded, locally upper-semimodular poset is pure shellable 205
6.3 EL-labeling of a poset and EL-shellable graded posets 209
6.4 Admissible lattices and SL-shellable poset 213
6.5 CL-shellable poset and recursive atom orderings 215
6.5.1 Rooted interval and CL-shellable poset 216
6.5.2 Recursive atom orderings 218
Chapter7 Betti Numbers and Castelnuovo-Mumford Regularity 222
7.1 Calculating Betti numbers via the functor Tor 222
7.2 Polarization keeps the Betti numbers and regularity unchanged 224
7.3 Hochster’s Formula and other two reformulations 226
7.4 Graded Betti numbers of graphs: some general reults 230
7.5 Spli也table
展開全部

復形和Cohen-Macaulay性質(英文版) 節選

Chapter 1 Preliminaries on Cohen-Macaulay Rings and Modules All rings in this book are assumed to be commutative with identity element and, all modules are unital. An f.g. module RM denotes that M is finitely generated as a left R-module. In this section, we collect some fundamental results of commutative algebra and, efforts are made to make the exposition self-contained. We take the monograph [39] (in English)as the fundamental reference in commutative algebra, and one can also use [119] (in Chinese)for some basic facts of commutative rings. This section also contains two particular topics. Recall that a ring R is called Cohen-Macaulay (often abbreviated as CM for brevity) if the local ring Rp is CohenMacaulay,i.e, depth( Pp) = dim (Rp) holds for every prime (or equivalently, maximal) ideal P of R. For any field ,set and . Then for any graded proper ideal I of S, there is a single condition on R =: S/ I, i.e., depth(m/1,R) = dimR, which we call grnded Cohen-Macaulay. In Therorem 1.61, we will give a direct proof to the following expected facts: The graded ring S/ I is graded Cohen-Macaulay if and only if it is Cohen-Macaulay. In the final part, we include an elementary approach of Schenzel’s view on sequentially Cohen-Macaulay modules, in which the key tool is the saturated submodule of nM related to an ideal I of R,see [39, Section 3.6] for a general discussion on the importance of the local cohomology module . 1.1 Jacobson radical and NAK Lemma For a ring R, the Jacobson radical J(R) is defined to be the intersection of all maximal left (or equivalently, right) ideals of R. Note that J ( R) contains no nonzero idempotent elements of R, and where U(R) consists of all units of R. Lemma 1.1 (NAK Lemma) Let M be an f.g. module over α ring R. For an ideal I of R,if and IM= M,then M = 0. Proof Let and let . It follows from that α = Aα for some . Then we have where and, denotes the adjoint matrix of a matrix B. Since 1 + b is invertible in R,It follows that , thus M = 0. Corollary 1.2 Let M be an f. g. module over a ring R and let N be a submodule of M. For an ideal I of R, if and , then. Thus the module J(R)M is a superfluous (or alternatively, a small) submodule of an f.g. module M. Note that Nakayama’s Lemma follows easily from the following Cayley-Hamilton Theorem: Theorem 1.3 Let I be an ideal of R, and assume that α module RM is generated by n elements. Then for each endomorphism of M with, there exist elements in such that the polynomial annihilates . Proof For any ,set xm = .Assume RM= . Then there exists a matrix such that , where .Since R is assumed to be commutative, we have where denotes the adjoint matrix of Bin Mn(R). Then the polynomial annihilates*, where * holds for all i. Cayley-Hamilton Theorem can be applied to verify the following: Corollary 1.4 Let R be a commutative ring and RM an f.g. module. Then ( 1) Any surjective endomorphism of M is an isomorphism. (2) A commutative ring has the Invariance Basis Nwmber, i. e., any module isomorphism implies n = m. Note that a non.commutative Noetherian ring also has the properties in Corollary 1.4. The proof to this fact is left as an exercise. Remark NAK is the abbreviation of Nakayama-Azumaya-Krull. It is also the first three letters of Nakayama. 1.2 Modules with finite lengths Recall that a module RM has finite length if and only if M is both Artinian and Noetherian. For a prime ideal P of R, recall that if and only if ann . Recall that Supp(P) consists of prime ideals P such that . The following proposition implies the well-known Jordan-Holder Theorem: Lemma 1.5 Let (l.2.1) be a composition series of the module M, i.e., each quotient module is simple. Let Then (1) For any maximal ideal Q of R , if and only if . Thus Supp(M) and hence, it is independent of the choice of the composition series. (2) For distinct maximal ideals P and Q of R, we have *. (3) For any *, the number of Mi such that * is the length of Mp as an Rp-module. Proof (1) Let * and assume*Then we have *and *. Take* such that *. Then we have*, hence*. Thus *, and it follows from * that MQ = 0. On the other hand, if *, assume* for some i. Since R/Q is a field, we have*. Thus*, hence*. This shows*, and completes the proof to (1). Note that * holds for any maximal ideal P distinct to Q. (2) and (3): If M is a simple module,then*, where P = ann(M). Then Mp = M and MQ = 0 for any maximal ideal *. Now assume length(M) = n > 1. Then for any maximal ideal P*A, we have an Rp-module sequence: Note that each M3/M3-1 is a simple module, and while the latter holds if and only if*. Thus the length of the Rpmodule Mp is the number of Mk such that*. In particular, it follows from the filtration (1.2.2) that (Mp )Q = 0 holds for distinct maximal ideals P and Q. Theorem 1.6 Let M be a module with

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 广州食堂承包_广州团餐配送_广州堂食餐饮服务公司 - 旺记餐饮 | 电力测功机,电涡流测功机,磁粉制动器,南通远辰曳引机测试台 | 多米诺-多米诺世界纪录团队-多米诺世界-多米诺团队培训-多米诺公关活动-多米诺创意广告-多米诺大型表演-多米诺专业赛事 | 杜甫仪器官网|实验室平行反应器|升降水浴锅|台式低温循环泵 | 保定市泰宏机械制造厂-河北铸件厂-铸造厂-铸件加工-河北大件加工 | 恒温恒湿试验箱_高低温试验箱_恒温恒湿箱-东莞市高天试验设备有限公司 | 螺旋压榨机-刮泥机-潜水搅拌机-电动泥斗-潜水推流器-南京格林兰环保设备有限公司 | 包塑丝_高铁绑丝_地暖绑丝_涂塑丝_塑料皮铁丝_河北创筹金属丝网制品有限公司 | 深圳工程师职称评定条件及流程_深圳职称评审_职称评审-职称网 | 谈股票-今日股票行情走势分析-牛股推荐排行榜 | 继电器模组-IO端子台-plc连接线-省配线模组厂家-世麦德 | 智慧旅游_智慧景区_微景通-智慧旅游景区解决方案提供商 | 光照全温振荡器(智能型)-恒隆仪器| 昆明网络公司|云南网络公司|昆明网站建设公司|昆明网页设计|云南网站制作|新媒体运营公司|APP开发|小程序研发|尽在昆明奥远科技有限公司 | 天空彩票天下彩,天空彩天空彩票免费资料,天空彩票与你同行开奖,天下彩正版资料大全 | 环球电气之家-中国专业电气电子产品行业服务网站! | 柴油机_柴油发电机_厂家_品牌-江苏卡得城仕发动机有限公司 | 呼末二氧化碳|ETCO2模块采样管_气体干燥管_气体过滤器-湖南纳雄医疗器械有限公司 | 金属管浮子流量计_金属转子流量计厂家-淮安润中仪表科技有限公司 | 道康宁消泡剂-瓦克-大川进口消泡剂供应商 | 西安微信朋友圈广告投放_微信朋友圈推广_西安度娘网络科技有限公司 | 品牌广告服务平台,好排名,好流量,好生意。 | 制样机-密封锤式破碎机-粉碎机-智能马弗炉-南昌科鑫制样 | 黑龙江「京科脑康」医院-哈尔滨失眠医院_哈尔滨治疗抑郁症医院_哈尔滨精神心理医院 | 根系分析仪,大米外观品质检测仪,考种仪,藻类鉴定计数仪,叶面积仪,菌落计数仪,抑菌圈测量仪,抗生素效价测定仪,植物表型仪,冠层分析仪-杭州万深检测仪器网 | 首页|专注深圳注册公司,代理记账报税,注册商标代理,工商变更,企业400电话等企业一站式服务-慧用心 | 深圳展厅设计_企业展馆设计_展厅设计公司_数字展厅设计_深圳百艺堂 | 棉柔巾代加工_洗脸巾oem_一次性毛巾_浴巾生产厂家-杭州禾壹卫品科技有限公司 | 东莞ERP软件_广州云ERP_中山ERP_台湾工厂erp系统-广东顺景软件科技有限公司 | 山东活动策划|济南活动公司|济南公关活动策划-济南锐嘉广告有限公司 | 机构创新组合设计实验台_液压实验台_气动实训台-戴育教仪厂 | 工业风机_环保空调_冷风机_工厂车间厂房通风降温设备旺成服务平台 | 安徽千住锡膏_安徽阿尔法锡膏锡条_安徽唯特偶锡膏_卡夫特胶水-芜湖荣亮电子科技有限公司 | 医学动画公司-制作3d医学动画视频-医疗医学演示动画制作-医学三维动画制作公司 | 汽车润滑油厂家-机油/润滑油代理-高性能机油-领驰慧润滑科技(河北)有限公司 | 根系分析仪,大米外观品质检测仪,考种仪,藻类鉴定计数仪,叶面积仪,菌落计数仪,抑菌圈测量仪,抗生素效价测定仪,植物表型仪,冠层分析仪-杭州万深检测仪器网 | 金属切削液-脱水防锈油-电火花机油-抗磨液压油-深圳市雨辰宏业科技发展有限公司 | 印刷人才网 印刷、包装、造纸,中国80%的印刷企业人才招聘选印刷人才网! | ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 磁力去毛刺机_去毛刺磁力抛光机_磁力光饰机_磁力滚抛机_精密金属零件去毛刺机厂家-冠古科技 | 建筑消防设施检测系统检测箱-电梯**检测仪器箱-北京宇成伟业科技有限责任公司 |