中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
復形和Cohen-Macaulay性質(英文版)

包郵 復形和Cohen-Macaulay性質(英文版)

出版社:科學出版社出版時間:2021-01-01
開本: 16開 頁數: 254
本類榜單:自然科學銷量榜
中 圖 價:¥101.1(7.9折) 定價  ¥128.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

復形和Cohen-Macaulay性質(英文版) 版權信息

  • ISBN:9787030703026
  • 條形碼:9787030703026 ; 978-7-03-070302-6
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

復形和Cohen-Macaulay性質(英文版) 內容簡介

本書包含組合交換代數近幾年來的一些主要研究成果,選題圍繞單純復形、代數復形以及Cohen-Macaulay性質展開,其中的CM性質是交換代數中很為核心的研究課題。全書共分為7章。

復形和Cohen-Macaulay性質(英文版) 目錄

Contents
Preface
Notations
Chapter 1 Preliminaries on Cohen-Macaulay Rings and Modules 1
1.1 Jacobson radical and NAK Lemma 2
1.2 Modules with finite lengths 3
1.3 On graded rings and minimal graded free solution 6
1.4 Cohen-Macaulay rings and Cohen-Macaulay Modules 11
1.4.1 Dimension, height and Krull’s PI theorem 11
1.4.2 Depth Lemma and depthI(M) 14
1.4.3 Local rings: Krull dimension and a system of parameters 17
1.4.4 Cohen-Macaulay modules and Cohen-Macaulay rings: local case 22
1.4.5 Cohen-Macaulay rings: non-local case 26
1.4.6 Cohen-Macaulay rings: graded case 28
1.4. 7 Gorenstein rings 34
1.5 Sequentially Cohen-Macaulay modu1es 35
Chapter 2 Abstract Simplicial Complexes 40
2.1 Definitions, fundamiental properties and examples 40
2.1.1 Abstract simplex and abstract simplicial complex*40
2.1.2 0ther notations and symbols on a simplicial complex * 41
2.1.3 Fundamental operations on sub-complexes and geometric realization of an abstract simplicial complex 42
2.2 The facet idea1I(*) and Stanley-Reisner ideal I*of a simplicial complex * 47
2.2.1 Monomial ideals and ideal operations 47
2.2.2 The Stanley-Reisner (nonface) ideal I* and facet ideal I* 47
2.2.3 The Alexander dual simplicial complex * of*and related properties 48
2.2.4 Square-free monomial ideal I: its nonface complex, facet complex; I* and f-ideals 54
2.3 Relative simplicial complexes and relative nonface ideals 55
Chapter 3 Shellable Simplicial Complexes 57
3.1 Destriction and examples 57
3.2 Restriction maps and Rearrangement Lemmas 60
3.3 (r,s)-skeleton * 64
3.4 Shifted, vertex-decomposable and shellable conditions for a simplicial complex 66
3.5 Shellable and k-decomposable 69
Chapter 4 Chain Complex Reduced from a Simplicial Complex and Koszul Complexes 73
4.1 The chain complex reduced from an abstract simplicial complex and reduced homology groups 74
4.2 Koszul complexes of lengths 1 or 2 79
4.3 Koszul complexes of geueral length 80
4.3.1 Exterior algebra constructed from a module 80
4.3.2 Koszul complexes: two commonly used definitions 81
4.4 Koszul complexes: a S田nmary of main results 83
4.5 Other resolutions and complexes of monomial ideals 84
4.5.1 The Taylor resolution 84
4.5.2 The Scarf complex 86
4.5.3 The Lyubeznik resolutions 89
Chapter 5 (Sequentially) Cohen-Macaulay Simplicial Complexes and Graphs 91
5.1 Cohen-Macaulay simplicial complexes 92
5.1.1 Fundamental properties and characterizations 92
5.1.2 Connected in codimension one 97
5.1.3 Minimal Cohen-Macaulay simplicial complexes and shelled over 100
5.2 Matroid complexes 104
5.3 Pure shellable, constructible, and Cohen-Macaulay 107
5.4 A graded ideal with linear quotients and shellable complexes 111
5.4.1 A graded id兇i with linear quotients 111
5.4.2 Shellable complexes and monomial ideals having linear quotients 115
5.4.3 Powers of edge ideals of graphs and regularity 118
5.4.4 A polymatroidal monomial ideal has linear quotients 119
5.4.5 Strongly shellable simplicial complexes 120
5.5 sCM simplicial complexes and sCM graded modules 121
5.6 Clique complex *, edge ideal I(G) and cover ideal Ic(G) 123
5. 7 Vertex-decomposable graphs a且d shellable graphs 124
5.8 Minimal verex covers and standard irredundant primary decomposition of I(G) 127
5.9 Cohen-Macaulay graphs and well-covered graphs 129
5.10 Shellable clutters 131
5.10.1 Clutters with the free vertex property 132
5.10.2 Chordal clutters 133
5.11 Some particular classes of graphs 133
5.11.1 Bipartite graphs 133
5.11.2 Boolean graphs are Cohen-Macaulay 138
5.11.3 Cactus graphs and classes of vertex-decomposable graphs 143
5.11.4 Cameron-Walker graphs 146
5.11.5 Chordal graphs 147
5.11.6 F-simplicial complexes and f-ideals of kind (n,d) 150
5.11.7 Gap-free graphs and related H-free graphs 174
5.11.8 Graphs whose complements are r-partite 176
5.11.9 Graph expansions and graph blow ups 185
5.11.10 Interlacing graphs * and triangular graphs * 188
5.11.11 Vertex clique-whiskered graphs * and their generalizations * 189
5.11.12 1-decomposable graphs 202
Chapter 6 Shellable Simplicial Complexes from Posets 204
6.1 Preliminaries 204
6.2 A bounded, locally upper-semimodular poset is pure shellable 205
6.3 EL-labeling of a poset and EL-shellable graded posets 209
6.4 Admissible lattices and SL-shellable poset 213
6.5 CL-shellable poset and recursive atom orderings 215
6.5.1 Rooted interval and CL-shellable poset 216
6.5.2 Recursive atom orderings 218
Chapter7 Betti Numbers and Castelnuovo-Mumford Regularity 222
7.1 Calculating Betti numbers via the functor Tor 222
7.2 Polarization keeps the Betti numbers and regularity unchanged 224
7.3 Hochster’s Formula and other two reformulations 226
7.4 Graded Betti numbers of graphs: some general reults 230
7.5 Spli也table
展開全部

復形和Cohen-Macaulay性質(英文版) 節選

Chapter 1 Preliminaries on Cohen-Macaulay Rings and Modules All rings in this book are assumed to be commutative with identity element and, all modules are unital. An f.g. module RM denotes that M is finitely generated as a left R-module. In this section, we collect some fundamental results of commutative algebra and, efforts are made to make the exposition self-contained. We take the monograph [39] (in English)as the fundamental reference in commutative algebra, and one can also use [119] (in Chinese)for some basic facts of commutative rings. This section also contains two particular topics. Recall that a ring R is called Cohen-Macaulay (often abbreviated as CM for brevity) if the local ring Rp is CohenMacaulay,i.e, depth( Pp) = dim (Rp) holds for every prime (or equivalently, maximal) ideal P of R. For any field ,set and . Then for any graded proper ideal I of S, there is a single condition on R =: S/ I, i.e., depth(m/1,R) = dimR, which we call grnded Cohen-Macaulay. In Therorem 1.61, we will give a direct proof to the following expected facts: The graded ring S/ I is graded Cohen-Macaulay if and only if it is Cohen-Macaulay. In the final part, we include an elementary approach of Schenzel’s view on sequentially Cohen-Macaulay modules, in which the key tool is the saturated submodule of nM related to an ideal I of R,see [39, Section 3.6] for a general discussion on the importance of the local cohomology module . 1.1 Jacobson radical and NAK Lemma For a ring R, the Jacobson radical J(R) is defined to be the intersection of all maximal left (or equivalently, right) ideals of R. Note that J ( R) contains no nonzero idempotent elements of R, and where U(R) consists of all units of R. Lemma 1.1 (NAK Lemma) Let M be an f.g. module over α ring R. For an ideal I of R,if and IM= M,then M = 0. Proof Let and let . It follows from that α = Aα for some . Then we have where and, denotes the adjoint matrix of a matrix B. Since 1 + b is invertible in R,It follows that , thus M = 0. Corollary 1.2 Let M be an f. g. module over a ring R and let N be a submodule of M. For an ideal I of R, if and , then. Thus the module J(R)M is a superfluous (or alternatively, a small) submodule of an f.g. module M. Note that Nakayama’s Lemma follows easily from the following Cayley-Hamilton Theorem: Theorem 1.3 Let I be an ideal of R, and assume that α module RM is generated by n elements. Then for each endomorphism of M with, there exist elements in such that the polynomial annihilates . Proof For any ,set xm = .Assume RM= . Then there exists a matrix such that , where .Since R is assumed to be commutative, we have where denotes the adjoint matrix of Bin Mn(R). Then the polynomial annihilates*, where * holds for all i. Cayley-Hamilton Theorem can be applied to verify the following: Corollary 1.4 Let R be a commutative ring and RM an f.g. module. Then ( 1) Any surjective endomorphism of M is an isomorphism. (2) A commutative ring has the Invariance Basis Nwmber, i. e., any module isomorphism implies n = m. Note that a non.commutative Noetherian ring also has the properties in Corollary 1.4. The proof to this fact is left as an exercise. Remark NAK is the abbreviation of Nakayama-Azumaya-Krull. It is also the first three letters of Nakayama. 1.2 Modules with finite lengths Recall that a module RM has finite length if and only if M is both Artinian and Noetherian. For a prime ideal P of R, recall that if and only if ann . Recall that Supp(P) consists of prime ideals P such that . The following proposition implies the well-known Jordan-Holder Theorem: Lemma 1.5 Let (l.2.1) be a composition series of the module M, i.e., each quotient module is simple. Let Then (1) For any maximal ideal Q of R , if and only if . Thus Supp(M) and hence, it is independent of the choice of the composition series. (2) For distinct maximal ideals P and Q of R, we have *. (3) For any *, the number of Mi such that * is the length of Mp as an Rp-module. Proof (1) Let * and assume*Then we have *and *. Take* such that *. Then we have*, hence*. Thus *, and it follows from * that MQ = 0. On the other hand, if *, assume* for some i. Since R/Q is a field, we have*. Thus*, hence*. This shows*, and completes the proof to (1). Note that * holds for any maximal ideal P distinct to Q. (2) and (3): If M is a simple module,then*, where P = ann(M). Then Mp = M and MQ = 0 for any maximal ideal *. Now assume length(M) = n > 1. Then for any maximal ideal P*A, we have an Rp-module sequence: Note that each M3/M3-1 is a simple module, and while the latter holds if and only if*. Thus the length of the Rpmodule Mp is the number of Mk such that*. In particular, it follows from the filtration (1.2.2) that (Mp )Q = 0 holds for distinct maximal ideals P and Q. Theorem 1.6 Let M be a module with

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 电动百叶窗,开窗器,电动遮阳百叶,电动开窗机生产厂家-徐州鑫友工控科技发展有限公司 | 【中联邦】增稠剂_增稠粉_水性增稠剂_涂料增稠剂_工业增稠剂生产厂家 | 广州各区危化证办理_危险化学品经营许可证代办 | 游泳池设计|设备|配件|药品|吸污机-东莞市太平洋康体设施有限公司 | 迪威娱乐|迪威娱乐客服|18183620002 | 自动化生产线-自动化装配线-直流电机自动化生产线-东莞市慧百自动化有限公司 | 滚塑PE壳体-PE塑料浮球-警示PE浮筒-宁波君益塑业有限公司 | 一体化污水处理设备,一体化污水设备厂家-宜兴市福源水处理设备有限公司 | 铝单板_铝窗花_铝单板厂家_氟碳包柱铝单板批发价格-佛山科阳金属 | 小程序开发公司-小程序制作-微信小程序开发-小程序定制-咏熠软件 | 电动球阀_不锈钢电动球阀_电动三通球阀_电动调节球阀_上海湖泉阀门有限公司 | 精密冲床,高速冲床等冲压设备生产商-常州晋志德压力机厂 | 层流手术室净化装修-检验科ICU改造施工-华锐净化工程-特殊科室建设厂家 | 100_150_200_250_300_350_400公斤压力空气压缩机-舰艇航天配套厂家 | 深圳公司注册-工商注册代理-注册公司流程和费用_护航财税 | 破碎机锤头_耐磨锤头_合金锤头-鼎成机械一站式耐磨铸件定制服务 微型驱动系统解决方案-深圳市兆威机电股份有限公司 | 亿诺千企网-企业核心产品贸易 | 镀锌钢格栅_热镀锌格栅板_钢格栅板_热镀锌钢格板-安平县昊泽丝网制品有限公司 | 广州食堂承包_广州团餐配送_广州堂食餐饮服务公司 - 旺记餐饮 | 保健品OEM贴牌代加工厂家_德州健之源| UV-1800紫外光度计-紫外可见光度计厂家-翱艺仪器(上海)有限公司 | 重庆轻质隔墙板-重庆安吉升科技有限公司 | 对夹式止回阀_对夹式蝶形止回阀_对夹式软密封止回阀_超薄型止回阀_不锈钢底阀-温州上炬阀门科技有限公司 | 广州物流公司_广州货运公司_广州回程车运输 - 万信物流 | 东莞画册设计_logo/vi设计_品牌包装设计 - 华略品牌设计公司 | 中高频感应加热设备|高频淬火设备|超音频感应加热电源|不锈钢管光亮退火机|真空管烤消设备 - 郑州蓝硕工业炉设备有限公司 | 密集架|电动密集架|移动密集架|黑龙江档案密集架-大量现货厂家销售 | 天津仓库出租网-天津电商仓库-天津云仓一件代发-【博程云仓】 | 量子管通环-自清洗过滤器-全自动反冲洗过滤器-北京罗伦过滤技术集团有限公司 | 造价工程师网,考试时间查询,报名入口信息-网站首页 | 杭州翻译公司_驾照翻译_专业人工翻译-杭州以琳翻译有限公司官网 组织研磨机-高通量组织研磨仪-实验室多样品组织研磨机-东方天净 | 铁盒_铁罐_马口铁盒_马口铁罐_铁盒生产厂家-广州博新制罐 | Eiafans.com_环评爱好者 环评网|环评论坛|环评报告公示网|竣工环保验收公示网|环保验收报告公示网|环保自主验收公示|环评公示网|环保公示网|注册环评工程师|环境影响评价|环评师|规划环评|环评报告|环评考试网|环评论坛 - Powered by Discuz! | 金环宇|金环宇电线|金环宇电缆|金环宇电线电缆|深圳市金环宇电线电缆有限公司|金环宇电缆集团 | 合肥升降机-合肥升降货梯-安徽升降平台「厂家直销」-安徽鼎升自动化科技有限公司 | 智慧物联网行业一站式解决方案提供商-北京东成基业 | 5nd音乐网|最新流行歌曲|MP3歌曲免费下载|好听的歌|音乐下载 免费听mp3音乐 | 领先的大模型技术与应用公司-中关村科金| 东莞螺杆空压机_永磁变频空压机_节能空压机_空压机工厂批发_深圳螺杆空压机_广州螺杆空压机_东莞空压机_空压机批发_东莞空压机工厂批发_东莞市文颖设备科技有限公司 | 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库-首页-东莞市傲马网络科技有限公司 | 粘度计维修,在线粘度计,二手博勒飞粘度计维修|收购-天津市祥睿科技有限公司 |