中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
高效分子離子傳遞膜(英文版)

包郵 高效分子離子傳遞膜(英文版)

出版社:科學出版社出版時間:2023-03-01
開本: B5 頁數: 312
本類榜單:自然科學銷量榜
中 圖 價:¥126.4(7.9折) 定價  ¥160.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

高效分子離子傳遞膜(英文版) 版權信息

  • ISBN:9787030748867
  • 條形碼:9787030748867 ; 978-7-03-074886-7
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

高效分子離子傳遞膜(英文版) 內容簡介

本書結合作者團隊的近期新研究成果,重點介紹了有機-無機復合膜和二維層狀膜在有機溶劑納濾、氫燃料電池、鋰-硫電池中的應用,分析了分子和離子級分離膜技術與膜過程領域的發展現狀、存在問題及優化方法,提出了膜過程中離子/分子級分離與傳遞過程強化的策略。本書的出版將對改善該學科的知識體系,明確該學科前言研究現狀與進展,促進膜分離技術與膜過程領域的發展具有積極意義。同時,本書也可為該領域的研究人員和工程師提供新的技術研發思路。

高效分子離子傳遞膜(英文版) 目錄

Contents
1 Introduction to Membrane 1
Jingtao Wang and Wenjia Wu
2 Composite Membrane for Organic Solvent Nanofiltration 7
Wenpeng Li, Shiyuan Liu, and Jingjing Chen
3 Lamellar Membrane for Organic Solvent Nanofiltration 65
Xiaoli Wu, Yifan Li, and Jingtao Wang
4 Composite Proton Exchange Membrane for Hydrogen Fuel Cell 103
Guoli Zhou, Jingchuan Dang, and Jingtao Wang
5 Lamellar and Nanofiber-Based Proton Exchange Membranesfor Hydrogen Fuel Cell 167
Jianlong Lin, Wenjia Wu, and Jingtao Wang
6 Composite Separator or Electrolyte for Lithium-Sulfur Battery 219
Weijie Kou, Jiajia Huang, and Wenjia Wu
7 Composite Electrolyte for All-Solid-State Lithium Battery 253
Jie Zhang, Yafang Zhang, and Jingtao Wang
展開全部

高效分子離子傳遞膜(英文版) 節選

Chapter 1 Introduction to Membrane Jingtao Wang and Wenjia Wu In the past decades, membrane technology has been widely utilized in various separation processes, because of their low-energy consumption, low-cost, reliability, and scalability when compared with conventional separation processes like distillation, extraction, or crystallization [1,2]. In order to further increase the competitiveness, intensive efforts have been made from improving the separation efficiency of existing membrane processes to exploring new applications. As the core part, membrane materials with high permeability, high selectivity, and high stability are extremely desired since they can significantly accelerate the practical application of membrane technology [3, 4]. To date, plenty of membranes with different pore sizes have been developed, such as polymer membrane, ceramic membrane, two-dimensional (2D) lamellar membrane, molecule sieving membrane, hybrid membrane, and composite membrane [5-10]. These membranes have been widely used for different separation processes including, microfiltration, ultrafiltration, nanofiltration, reverse osmosis, gas separation, and proton/ion conduction, etc. [11, 12]. For each category of membrane, the physical and chemical environments of transfer channels are of great importance in manipulating the comprehensive properties. The physical environments are dictated by the connectivity, tortuosity, and size of transfer channels, while the chemical environments are dictated by the type, amount, and distribution of functional groups within transfer channels [13]. Generally, ideal transfer channels should integrate the following attributes: (i) they should be short with appropriate transfer environment to endow membranes with high permeability, (ii) the channel size distribution should be narrow to endow membranes with high selectivity, and (iii) the chemical and mechanical stability should be high to endow membranes with long-term operation stability [14]. Currently, polymers are the dominant membrane materials, due to their easy processability and high scale-up capability. For conventional polymer membranes, breaking the permeability-selec-tivity or permeability-stability trade-off remains a challenge. The great progress in polymer membranes over the past decades has brought about the booming of novel kinds of structured membranes including, hybrid membrane, composite membrane, and phase-separated membrane, which push the separation performances of polymer membranes to new records [15-18]. Hybrid membrane is an intricately structured membrane configuration, owing to its merit of coupling the good flexibility and processability of polymers with the regular topological structure as well as the tunable functionality of fillers [19, 20]. Impermeable fillers such as silica particles, graphene oxide (GO) nanosheets, and organic/inorganic nanorods can induce a distortion of chain alignment to improve the free volume property or induce the construction of long-range, ordered transfer channels in membrane [21,22]. Permeable fillers such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs), and zeolite can afford additional transfer pathways and mechanisms to membrane including, molecule sieving, and selective adsorption [23, 24]. Composite membrane for molecule transfer is generally a heterogeneous membrane with dense separation layer and porous support layer, where the separation layer and the support layer can be separately optimized to achieve simultaneously high separation performance and stability [25,26]. Particularly, the fabrication of composite membrane with an ultrathin separation layer is deemed as a delicate strategy to achieve highly permeable membrane, which is one of the most important pursuits for membrane technology [27, 28]. At present, researches related to composite membranes mainly focus on the precise manipulation of physical structure and chemical component of separation layer; however, these remain challenging due to the pursuit of ultrathin thickness. For proton/ion separation, electrospinning is increasingly recognized as a powerful mean for introducing unique phase-separated architectures into composite membranes [29]. Indeed, it allows the elaboration of composite membranes with a rather facile mean to control of the long-range organization/distribution/percolation ofhydrophilic and hydrophobic domains of the ionomer by adjusting the type of electrospun material, the volume fraction of nanofibers, and the experimental conditions [30]. Moreover, electrospinning can impart uniaxial alignment of polymer chains within nanofibers, resulting in enhanced mechanical properties. Importantly, it can promote the formation of interconnected transfer channels, which facilitate the improvement in proton/ion conduction [31]. In recent years, 2D nanosheets, with a thickness of one to a few atoms, have become the promising building blocks for ad

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 右手官网|右手工业设计|外观设计公司|工业设计公司|产品创新设计|医疗产品结构设计|EMC产品结构设计 | 专注氟塑料泵_衬氟泵_磁力泵_卧龙泵阀_化工泵专业品牌 - 梭川泵阀 | 硅PU球场、篮球场地面施工「水性、环保、弹性」硅PU材料生产厂家-广东中星体育公司 | 北京企业宣传片拍摄_公司宣传片制作-广告短视频制作_北京宣传片拍摄公司 | 广东风淋室_广东风淋室厂家_广东风淋室价格_广州开源_传递窗_FFU-广州开源净化科技有限公司 | 黑田精工电磁阀-CAMMOZI气缸-ROSS电磁-上海茂硕机械设备有限公司 | 找果网 | 苹果手机找回方法,苹果iPhone手机丢了找回,认准找果网! | 萃取箱-萃取槽-PVC萃取箱厂家-混合澄清槽- 杭州南方化工设备 | 首页|专注深圳注册公司,代理记账报税,注册商标代理,工商变更,企业400电话等企业一站式服务-慧用心 | 求是网 - 思想建党 理论强党 | CCC验厂-家用电器|服务器CCC认证咨询-奥测世纪 | 高通量组织研磨仪-多样品组织研磨仪-全自动组织研磨仪-研磨者科技(广州)有限公司 | 合肥网络推广_合肥SEO网站优化-安徽沃龙First | 安全光栅|射频导纳物位开关|音叉料位计|雷达液位计|两级跑偏开关|双向拉绳开关-山东卓信机械有限公司 | 多米诺-多米诺世界纪录团队-多米诺世界-多米诺团队培训-多米诺公关活动-多米诺创意广告-多米诺大型表演-多米诺专业赛事 | 热熔胶网膜|pes热熔网膜价格|eva热熔胶膜|热熔胶膜|tpu热熔胶膜厂家-苏州惠洋胶粘制品有限公司 | 强效碱性清洗剂-实验室中性清洗剂-食品级高纯氮气发生器-上海润榕科学器材有限公司 | 中天寰创-内蒙古钢结构厂家|门式刚架|钢结构桁架|钢结构框架|包头钢结构煤棚 | 啤酒设备-小型啤酒设备-啤酒厂设备-济南中酿机械设备有限公司 | 缝纫客| YJLV22铝芯铠装电缆-MYPTJ矿用高压橡套电缆-天津市电缆总厂 | 成都LED显示屏丨室内户外全彩led屏厂家方案报价_四川诺显科技 | 玻璃钢罐_玻璃钢储罐_盐酸罐厂家-河北华盛节能设备有限公司 | 正压密封性测试仪-静态发色仪-导丝头柔软性测试仪-济南恒品机电技术有限公司 | 广东燎了网络科技有限公司官网-网站建设-珠海网络推广-高端营销型外贸网站建设-珠海专业h5建站公司「了了网」 | 北京环球北美考试院【官方网站】|北京托福培训班|北京托福培训 | 科昊仪器超纯水机系统-可成气相液氮罐-美菱超低温冰箱-西安昊兴生物科技有限公司 | IP检测-检测您的IP质量| 手机游戏_热门软件app下载_好玩的安卓游戏下载基地-吾爱下载站 | 汽车整车综合环境舱_军标砂尘_盐雾试验室试验箱-无锡苏南试验设备有限公司 | 工控机-图像采集卡-PoE网卡-人工智能-工业主板-深圳朗锐智科 | 电主轴-高速精密电主轴-高速电机厂家-瑞德沃斯品牌有限公司 | 美甲贴片-指甲贴片-穿戴美甲-假指甲厂家--薇丝黛拉 | 北京律师咨询_知名专业北京律师事务所_免费法律咨询 | PTFE接头|聚四氟乙烯螺丝|阀门|薄膜|消解罐|聚四氟乙烯球-嘉兴市方圆氟塑制品有限公司 | QQ房产导航-免费收录优秀房地产网站_房地产信息网 | 自动气象站_气象站监测设备_全自动气象站设备_雨量监测站-山东风途物联网 | 大型工业风扇_工业大风扇_大吊扇_厂房车间降温-合昌大风扇 | 贵州科比特-防雷公司厂家提供贵州防雷工程,防雷检测,防雷接地,防雷设备价格,防雷产品报价服务-贵州防雷检测公司 | 防弹玻璃厂家_防爆炸玻璃_电磁屏蔽玻璃-四川大硅特玻科技有限公司 | 液压油缸-液压缸厂家价格,液压站系统-山东国立液压制造有限公司 液压油缸生产厂家-山东液压站-济南捷兴液压机电设备有限公司 |