中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
分數階擴散方程的定性理論(英文版)

包郵 分數階擴散方程的定性理論(英文版)

作者:慕嘉
出版社:科學出版社出版時間:2022-12-01
開本: B5 頁數: 164
本類榜單:自然科學銷量榜
中 圖 價:¥69.5(7.9折) 定價  ¥88.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

分數階擴散方程的定性理論(英文版) 版權信息

  • ISBN:9787030736628
  • 條形碼:9787030736628 ; 978-7-03-073662-8
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

分數階擴散方程的定性理論(英文版) 內容簡介

該專著主要包括了分數階泛函微分方程、分數階抽象常微分方程、分數階抽象發展方程、基于臨界點理論的分數階邊值問題、分數階偏微分方程解對初值的連續依賴性、存在性、正則性、專享性、多解性等。該專著主要包括了分數階泛函微分方程、分數階抽象常微分方程、分數階抽象發展方程、基于臨界點理論的分數階邊值問題、分數階偏微分方程解對初值的連續依賴性、存在性、正則性、專享性、多解性等。

分數階擴散方程的定性理論(英文版) 目錄

Contents
《博士后文庫》序言
Preface
Chapter1 Preliminaries 1
1.1 Introduction 1
1.2 Fractionalintegrals and fractional derivatives 3
1.3 Mittag-Leffler functions 5
1.4 Measureof noncompactness 5
1.5 Semigroupsofoperators 6
1.6 Fixedpointtheorems 8
1.7 Definitions of solutions to abstract fractional equations 9
1.8 Other lemmas 11
Chapter2 Initial (or Boundary)Value Problems forFractional Diffusion Equations 13
2.1 Impulsive fractional diffusion equations with nonlocal initial conditions 13
2.1.1 Introduction 13
2.1.2 Existence of mild solutions 16
2.1.3 Examples 21
2.1.4 Notes and remarks 23
2.2 Initial problems for fractional diffusion equations in fractionalpower spaces 23
I2.2.1 ntroduction 23
2.2.2 Existence of q-mild solutions 25
2.2.3 Existence of q-classical solutions 30
2.2.4 Applications 30
2.2.5 Notes and remarks 32
2.3 Positive mild solutionstoperiodicboundaryvalue problemsfor fractional diffusion equations 32 Introduction 32
2.3.1 Contents
2.3.2 Existence of mild solutions 38
2.3.3 Examples 40
2.3.4 Notes and remarks 41
2.4 Periodicboundaryvalue problems for semilinear fractional differential equations 41
2.4.1 Introduction 41
2.4.2 Existence of mild solutions 44
2.4.3 Notes and remarks 51
Chapter3 Bounded Solutions toFractional Diffusion Equations 52
3.1 Bounded solutions to fractional diffusion equations with C0-semigroups 52
3.1.1 Introduction 52
3.1.2 Results for linear equations 59
3.1.3 Results for nonlinear equations 64
3.1.4 Examples 69
3.1.5 Notes and remarks 70
3.2 Periodic (orS-asymptotically) solutions to fractional diffusion equations in fractionalpower spaces 70
3.2.1 Introduction 70
3.2.2 Existenceofperiodic(or S-asymptotically) mild or classical solutions 74
3.2.3 Examples 81
3.2.4 Notes and remarks 82
3.3 Square-mean S-asymptoticallyperiodic solutions to fractional stochastic diffusion equations 82
3.3.1 Introduction 82
3.3.2 Existence-uniqueness of square-mean S-asymptotically !-periodic solutions 88
3.3.3 Asymptotically stabilityof square-mean S-asymptotically !-periodic solutions 98
3.3.4 Examples 99
3.3.5 Notes and remarks 100
Chapter4 Existence and Regularityof Solutions toFractional Diffusion Equations 101
4.1 Existence and regularityof solutions to fractional diffusion equations involving time-dependentdiffusion coefficients 101
4.1.1 Introduction 101
4.1.2 Existence and regularityof classical solutions 107
4.1.3 Notes and remarks 118
4.2 Existence and regularityof solutions to fractional diffusion equations involving time-space-dependent diffusion coefficients 118
4.2.1 Introduction 118
4.2.2 Existence and regularityof classical solutions 121
4.2.3 Notes and remarks 128
Bibliography 129
Index 144
編后記 145
展開全部

分數階擴散方程的定性理論(英文版) 節選

Chapter l Preliminaries 1.1 Introduction Fractional calculus is an important branch of mathematics, which is a generalizationof ordinary differentiation and integration to arbitrary real or complex order. Itis well known that the f'ractional order differential and integral operators are nonlocal operators. This is one reason why fractional differential operators provide anexcellent instrument for description of memory and hereditary properties of variousphysical processes. The subject is as old as differential calculus. In September 30th,1695, G. A. de L'Hospital wrote to G. W. Leibniz asking him about the differentiationof order*G. W. Leibniz response " an apparent paradox from which, one day,useful consequences will be drawn ". After that, many mathematicians made manycontributions iii this field, such as N.H. Abel, A.K. Griinwald, J. Liouville, P.S.Laplace, J.B.J. Fourier, B. Riemann, M. Caputo, etc. However, due to the unclearapplication background, the development of fractional calculus is very slow in theearly stage. It was not uiitil 1970s that B. Mandelbort of Yale proposed fractaltheory and applied RiemannLiouville fractional calculus to study Brownian motionin fractal modia that fractional calculus dcvclopcd rapidly. We observe that fractional order can be complex in viewpoint of pure rnathernaticsand thcrc is much intcrost in dcvoloping the thooretical analysis and numcricalmethods to fractional equations, because they can describe the behavior of realdynamical systems in compact expressions, taking into account nonlocalcharacteristics like infinite memory [22, 23, 138] . Some instance are thermal diffusionphenomenon [39], botanical electrical impedances [71], model of love betweenhumans [4], the relaxation of water on a porous dyke whose damping ratio isindependent of the mass of moving water [134], and so forth. On the otherhand, dircction the bchavior of a proccss with fractional ordcr controllcrs wouldbe an advantage, because the responses are not restricted to a sum of exponentialfunctions, therefore a wide range of responses neglected by integer order calculuswould be approached [19]. For other advantages of fractional calculus, we can seereal materials [59,131,140,150,177] , control engineering [3,42] , electromagnetism [50],biosciences [110], fluid mechanics [80], electrochemistry [132], anomalous diffusionprocesses [53], dynamic of viscoelastic materials [83], viscoelastic systems [13],continuum and statistical mechanics [112] and propagation of spherical flames[114], robotic manupulators [139], gear transmissions [62], vibration systems [25],hydrogeology, boundary layer effect of pipeline, signal processing and systemidontification, quantum cconomy, fractal thcory, hcat transfcr, clcctrical circuits,polymer physics, finance, hydrology and even biology [140], etc. The types of fractional differential equations mainly include neutral differentialequations, f'unctional differential equations, impulsive differential equations,diffcrontial cquations in Banach spacc, partial diffbrontial equation (such as Laplacoequation, diffusion equation, wave equation, Schrodinger equation, NavierStokesequation, Heisenberg equation, Langevin equation, FokkerPlanck equation, etc),uncertain differential equation (such as stochastic differential equation, fuzzydifferential equation, etc.), chaotic system, Hamiltonian system, Lorenz system,financial system, neural network, etc. There are several papers regarding abstractforms of fractional partial equations [85, 89]. For more details, we can ref'er to[119, 182184, 188, 189, 193]. This aspcct clcarly indicatcs the importancc andadaptation of fractionalorder operators in the mathematical modeling of scientificand technical problems. For instance, in the study of fractional advectiondispersionequation and fractional FokkerPlanck equation [17, 18], a laboratory tracer test hasindicated that fractional differential equations approximate Levy motion better thanintegerorder equations. For more details, see [14, 24, 29, 34, 40, 100, 110, 178]. More and more experimental data show that the traditional integerorderdiffusion equations are not enough to describe some anomalous diffusion phenomena.In real life, the regular diffusion phenomenon (integer order case) only occurs in afew special cases. It has been observed that the mean square displacement of adiffusive material is proportional to t when tj in normal diffusion (integerorderdiffusion), but this proportionality becomos of tho ordcr to for tj oo in casc ofanomalous diffusion. Compared with the traditional diffusion equations (first order),with fractional diffusion equations, subdifFusion or supdiffusion phenomenon canbe described when its order is between o and I or between I and 2, respectively.For example, if the first derivative is replaced by the fractional order aE (0,1),the diffusion speed will be slowed down due to the memory characteristics of thefractional derivative, whic

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 云南丰泰挖掘机修理厂-挖掘机维修,翻新,再制造的大型企业-云南丰泰工程机械维修有限公司 | 河北中仪伟创试验仪器有限公司是专业生产沥青,土工,水泥,混凝土等试验仪器的厂家,咨询电话:13373070969 | Type-c防水母座|贴片母座|耳机接口|Type-c插座-深圳市步步精科技有限公司 | TwistDx恒温扩增-RAA等温-Jackson抗体-默瑞(上海)生物科技有限公司 | 温州在线网 | 作文导航网_作文之家_满分作文_优秀作文_作文大全_作文素材_最新作文分享发布平台 | 分子精馏/精馏设备生产厂家-分子蒸馏工艺实验-新诺舜尧(天津)化工设备有限公司 | 软文推广发布平台_新闻稿件自助发布_媒体邀约-澜媒宝 | 新材料分散-高速均质搅拌机-超声波分散混合-上海化烁智能设备有限公司 | 驾驶式洗地机/扫地机_全自动洗地机_工业洗地机_荣事达工厂官网 | 柴油发电机组_柴油发电机_发电机组价格-江苏凯晨电力设备有限公司 | 钢绞线万能材料试验机-全自动恒应力两用机-混凝土恒应力压力试验机-北京科达京威科技发展有限公司 | 塑木弯曲试验机_铜带拉伸强度试验机_拉压力测试台-倾技百科 | 首页 - 张店继勇软件开发工作室 兰州UPS电源,兰州山特UPS-兰州万胜商贸 | 北京发电车出租-发电机租赁公司-柴油发电机厂家 - 北京明旺盛安机电设备有限公司 | 胶辊硫化罐_胶鞋硫化罐_硫化罐厂家-山东鑫泰鑫智能装备有限公司 意大利Frascold/富士豪压缩机_富士豪半封闭压缩机_富士豪活塞压缩机_富士豪螺杆压缩机 | 水质监测站_水质在线分析仪_水质自动监测系统_多参数水质在线监测仪_水质传感器-山东万象环境科技有限公司 | 网带通过式抛丸机,,网带式打砂机,吊钩式,抛丸机,中山抛丸机生产厂家,江门抛丸机,佛山吊钩式,东莞抛丸机,中山市泰达自动化设备有限公司 | 四川成都干燥设备_回转筒干燥机_脉冲除尘器_输送设备_热风炉_成都川工星科机电设备有限公司 | 广州展览设计公司_展台设计搭建_展位设计装修公司-众派展览装饰 广州展览制作工厂—[优简]直营展台制作工厂_展会搭建资质齐全 | 玻璃钢型材-玻璃钢风管-玻璃钢管道,生产厂家-[江苏欧升玻璃钢制造有限公司] | 焊锡丝|焊锡条|无铅锡条|无铅锡丝|无铅焊锡线|低温锡膏-深圳市川崎锡业科技有限公司 | 石英陶瓷,石英坩埚,二氧化硅陶瓷-淄博百特高新材料有限公司 | 塑胶跑道施工-硅pu篮球场施工-塑胶网球场建造-丙烯酸球场材料厂家-奥茵 | TPE_TPE热塑性弹性体_TPE原料价格_TPE材料厂家-惠州市中塑王塑胶制品公司- 中塑王塑胶制品有限公司 | 洛阳永磁工业大吊扇研发生产-工厂通风降温解决方案提供商-中实洛阳环境科技有限公司 | 插针变压器-家用电器变压器-工业空调变压器-CD型电抗器-余姚市中驰电器有限公司 | 壹车网 | 第一时间提供新车_资讯_报价_图片_排行! | pH污水传感器电极,溶解氧电极传感器-上海科蓝仪表科技有限公司 | 德国EA可编程直流电源_电子负载,中国台湾固纬直流电源_交流电源-苏州展文电子科技有限公司 | 地埋式垃圾站厂家【佳星环保】小区压缩垃圾中转站转运站 | 口信网(kousing.com) - 行业资讯_行业展会_行业培训_行业资料 | 微量水分测定仪_厂家_卡尔费休微量水分测定仪-淄博库仑 | 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 - 杭州标识标牌|文化墙|展厅|导视|户内外广告|发光字|灯箱|铭阳制作公司 | 干粉砂浆设备_干混砂浆生产线_腻子粉加工设备_石膏抹灰砂浆生产成套设备厂家_干粉混合设备_砂子烘干机--郑州铭将机械设备有限公司 | 冲击式破碎机-冲击式制砂机-移动碎石机厂家_青州市富康机械有限公司 | 注塑机-压铸机-塑料注塑机-卧式注塑机-高速注塑机-单缸注塑机厂家-广东联升精密智能装备科技有限公司 | 电镀电源整流器_高频电解电源_单脉双脉冲电源 - 东阳市旭东电子科技 | 超声波气象站_防爆气象站_空气质量监测站_负氧离子检测仪-风途物联网 | 361°官方网站 | 影合社-影视人的内容合作平台 |