中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
分數階擴散方程的定性理論(英文版)

包郵 分數階擴散方程的定性理論(英文版)

作者:慕嘉
出版社:科學出版社出版時間:2022-12-01
開本: B5 頁數: 164
本類榜單:自然科學銷量榜
中 圖 價:¥67.0(7.6折) 定價  ¥88.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

分數階擴散方程的定性理論(英文版) 版權信息

  • ISBN:9787030736628
  • 條形碼:9787030736628 ; 978-7-03-073662-8
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

分數階擴散方程的定性理論(英文版) 內容簡介

該專著主要包括了分數階泛函微分方程、分數階抽象常微分方程、分數階抽象發展方程、基于臨界點理論的分數階邊值問題、分數階偏微分方程解對初值的連續依賴性、存在性、正則性、專享性、多解性等。該專著主要包括了分數階泛函微分方程、分數階抽象常微分方程、分數階抽象發展方程、基于臨界點理論的分數階邊值問題、分數階偏微分方程解對初值的連續依賴性、存在性、正則性、專享性、多解性等。

分數階擴散方程的定性理論(英文版) 目錄

Contents
《博士后文庫》序言
Preface
Chapter1 Preliminaries 1
1.1 Introduction 1
1.2 Fractionalintegrals and fractional derivatives 3
1.3 Mittag-Leffler functions 5
1.4 Measureof noncompactness 5
1.5 Semigroupsofoperators 6
1.6 Fixedpointtheorems 8
1.7 Definitions of solutions to abstract fractional equations 9
1.8 Other lemmas 11
Chapter2 Initial (or Boundary)Value Problems forFractional Diffusion Equations 13
2.1 Impulsive fractional diffusion equations with nonlocal initial conditions 13
2.1.1 Introduction 13
2.1.2 Existence of mild solutions 16
2.1.3 Examples 21
2.1.4 Notes and remarks 23
2.2 Initial problems for fractional diffusion equations in fractionalpower spaces 23
I2.2.1 ntroduction 23
2.2.2 Existence of q-mild solutions 25
2.2.3 Existence of q-classical solutions 30
2.2.4 Applications 30
2.2.5 Notes and remarks 32
2.3 Positive mild solutionstoperiodicboundaryvalue problemsfor fractional diffusion equations 32 Introduction 32
2.3.1 Contents
2.3.2 Existence of mild solutions 38
2.3.3 Examples 40
2.3.4 Notes and remarks 41
2.4 Periodicboundaryvalue problems for semilinear fractional differential equations 41
2.4.1 Introduction 41
2.4.2 Existence of mild solutions 44
2.4.3 Notes and remarks 51
Chapter3 Bounded Solutions toFractional Diffusion Equations 52
3.1 Bounded solutions to fractional diffusion equations with C0-semigroups 52
3.1.1 Introduction 52
3.1.2 Results for linear equations 59
3.1.3 Results for nonlinear equations 64
3.1.4 Examples 69
3.1.5 Notes and remarks 70
3.2 Periodic (orS-asymptotically) solutions to fractional diffusion equations in fractionalpower spaces 70
3.2.1 Introduction 70
3.2.2 Existenceofperiodic(or S-asymptotically) mild or classical solutions 74
3.2.3 Examples 81
3.2.4 Notes and remarks 82
3.3 Square-mean S-asymptoticallyperiodic solutions to fractional stochastic diffusion equations 82
3.3.1 Introduction 82
3.3.2 Existence-uniqueness of square-mean S-asymptotically !-periodic solutions 88
3.3.3 Asymptotically stabilityof square-mean S-asymptotically !-periodic solutions 98
3.3.4 Examples 99
3.3.5 Notes and remarks 100
Chapter4 Existence and Regularityof Solutions toFractional Diffusion Equations 101
4.1 Existence and regularityof solutions to fractional diffusion equations involving time-dependentdiffusion coefficients 101
4.1.1 Introduction 101
4.1.2 Existence and regularityof classical solutions 107
4.1.3 Notes and remarks 118
4.2 Existence and regularityof solutions to fractional diffusion equations involving time-space-dependent diffusion coefficients 118
4.2.1 Introduction 118
4.2.2 Existence and regularityof classical solutions 121
4.2.3 Notes and remarks 128
Bibliography 129
Index 144
編后記 145
展開全部

分數階擴散方程的定性理論(英文版) 節選

Chapter l Preliminaries 1.1 Introduction Fractional calculus is an important branch of mathematics, which is a generalizationof ordinary differentiation and integration to arbitrary real or complex order. Itis well known that the f'ractional order differential and integral operators are nonlocal operators. This is one reason why fractional differential operators provide anexcellent instrument for description of memory and hereditary properties of variousphysical processes. The subject is as old as differential calculus. In September 30th,1695, G. A. de L'Hospital wrote to G. W. Leibniz asking him about the differentiationof order*G. W. Leibniz response " an apparent paradox from which, one day,useful consequences will be drawn ". After that, many mathematicians made manycontributions iii this field, such as N.H. Abel, A.K. Griinwald, J. Liouville, P.S.Laplace, J.B.J. Fourier, B. Riemann, M. Caputo, etc. However, due to the unclearapplication background, the development of fractional calculus is very slow in theearly stage. It was not uiitil 1970s that B. Mandelbort of Yale proposed fractaltheory and applied RiemannLiouville fractional calculus to study Brownian motionin fractal modia that fractional calculus dcvclopcd rapidly. We observe that fractional order can be complex in viewpoint of pure rnathernaticsand thcrc is much intcrost in dcvoloping the thooretical analysis and numcricalmethods to fractional equations, because they can describe the behavior of realdynamical systems in compact expressions, taking into account nonlocalcharacteristics like infinite memory [22, 23, 138] . Some instance are thermal diffusionphenomenon [39], botanical electrical impedances [71], model of love betweenhumans [4], the relaxation of water on a porous dyke whose damping ratio isindependent of the mass of moving water [134], and so forth. On the otherhand, dircction the bchavior of a proccss with fractional ordcr controllcrs wouldbe an advantage, because the responses are not restricted to a sum of exponentialfunctions, therefore a wide range of responses neglected by integer order calculuswould be approached [19]. For other advantages of fractional calculus, we can seereal materials [59,131,140,150,177] , control engineering [3,42] , electromagnetism [50],biosciences [110], fluid mechanics [80], electrochemistry [132], anomalous diffusionprocesses [53], dynamic of viscoelastic materials [83], viscoelastic systems [13],continuum and statistical mechanics [112] and propagation of spherical flames[114], robotic manupulators [139], gear transmissions [62], vibration systems [25],hydrogeology, boundary layer effect of pipeline, signal processing and systemidontification, quantum cconomy, fractal thcory, hcat transfcr, clcctrical circuits,polymer physics, finance, hydrology and even biology [140], etc. The types of fractional differential equations mainly include neutral differentialequations, f'unctional differential equations, impulsive differential equations,diffcrontial cquations in Banach spacc, partial diffbrontial equation (such as Laplacoequation, diffusion equation, wave equation, Schrodinger equation, NavierStokesequation, Heisenberg equation, Langevin equation, FokkerPlanck equation, etc),uncertain differential equation (such as stochastic differential equation, fuzzydifferential equation, etc.), chaotic system, Hamiltonian system, Lorenz system,financial system, neural network, etc. There are several papers regarding abstractforms of fractional partial equations [85, 89]. For more details, we can ref'er to[119, 182184, 188, 189, 193]. This aspcct clcarly indicatcs the importancc andadaptation of fractionalorder operators in the mathematical modeling of scientificand technical problems. For instance, in the study of fractional advectiondispersionequation and fractional FokkerPlanck equation [17, 18], a laboratory tracer test hasindicated that fractional differential equations approximate Levy motion better thanintegerorder equations. For more details, see [14, 24, 29, 34, 40, 100, 110, 178]. More and more experimental data show that the traditional integerorderdiffusion equations are not enough to describe some anomalous diffusion phenomena.In real life, the regular diffusion phenomenon (integer order case) only occurs in afew special cases. It has been observed that the mean square displacement of adiffusive material is proportional to t when tj in normal diffusion (integerorderdiffusion), but this proportionality becomos of tho ordcr to for tj oo in casc ofanomalous diffusion. Compared with the traditional diffusion equations (first order),with fractional diffusion equations, subdifFusion or supdiffusion phenomenon canbe described when its order is between o and I or between I and 2, respectively.For example, if the first derivative is replaced by the fractional order aE (0,1),the diffusion speed will be slowed down due to the memory characteristics of thefractional derivative, whic

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 钢托盘,铁托盘,钢制托盘,镀锌托盘,饲料托盘,钢托盘制造商-南京飞天金属13260753852 | 太原装修公司_山西整装家装设计_太原室内装潢软装_肖邦家居 | 泰国试管婴儿_泰国第三代试管婴儿_泰国试管婴儿费用/多少钱_孕泰来 | 拼装地板,悬浮地板厂家,悬浮式拼装运动地板-石家庄博超地板科技有限公司 | 中医中药治疗血小板减少-石家庄血液病肿瘤门诊部 | 定硫仪,量热仪,工业分析仪,马弗炉,煤炭化验设备厂家,煤质化验仪器,焦炭化验设备鹤壁大德煤质工业分析仪,氟氯测定仪 | ASA膜,ASA共挤料,篷布色母料-青岛未来化学有限公司 | 棕刚玉-白刚玉厂家价格_巩义市东翔净水材料厂 | Magnescale探规,Magnescale磁栅尺,Magnescale传感器,Magnescale测厚仪,Mitutoyo光栅尺,笔式位移传感器-苏州连达精密量仪有限公司 | 高温链条油|高温润滑脂|轴承润滑脂|机器人保养用油|干膜润滑剂-东莞卓越化学 | 熔体泵|换网器|熔体齿轮泵|熔体计量泵厂家-郑州巴特熔体泵有限公司 | 老房子翻新装修,旧房墙面翻新,房屋防水补漏,厨房卫生间改造,室内装潢装修公司 - 一修房屋快修官网 | 泰州物流公司_泰州货运公司_泰州物流专线-东鑫物流公司 | 中天寰创-内蒙古钢结构厂家|门式刚架|钢结构桁架|钢结构框架|包头钢结构煤棚 | 西安耀程造价培训机构_工程预算实训_广联达实作实操培训 | 考勤系统_人事考勤管理系统_本地部署BS考勤系统_考勤软件_天时考勤管理专家 | 玻璃钢型材-玻璃钢风管-玻璃钢管道,生产厂家-[江苏欧升玻璃钢制造有限公司] | 刺绳_刀片刺网_刺丝滚笼_不锈钢刺绳生产厂家_安平县浩荣金属丝网制品有限公司-安平县浩荣金属丝网制品有限公司 | 全自动变压器变比组别测试仪-手持式直流电阻测试仪-上海来扬电气 | 次氯酸钠厂家,涉水级次氯酸钠,三氯化铁生产厂家-淄博吉灿化工 | 3A别墅漆/3A环保漆_广东美涂士建材股份有限公司【官网】 | 防火板_饰面耐火板价格、厂家_品牌认准格林雅 | 桑茶-七彩贝壳桑叶茶 长寿茶 | 钢格板|镀锌钢格板|热镀锌钢格板|格栅板|钢格板|钢格栅板|热浸锌钢格板|平台钢格板|镀锌钢格栅板|热镀锌钢格栅板|平台钢格栅板|不锈钢钢格栅板 - 专业钢格板厂家 | 涡轮流量计_LWGY智能气体液体电池供电计量表-金湖凯铭仪表有限公司 | 【德信自动化】点胶机_全自动点胶机_自动点胶机厂家_塑料热压机_自动螺丝机-深圳市德信自动化设备有限公司 | 合肥展厅设计-安徽展台设计-合肥展览公司-安徽奥美展览工程有限公司 | 工业机械三维动画制作 环保设备原理三维演示动画 自动化装配产线三维动画制作公司-南京燃动数字 聚合氯化铝_喷雾聚氯化铝_聚合氯化铝铁厂家_郑州亿升化工有限公司 | 精密钢管,冷拔精密无缝钢管,精密钢管厂,精密钢管制造厂家,精密钢管生产厂家,山东精密钢管厂家 | 安平县鑫川金属丝网制品有限公司,防风抑尘网,单峰防风抑尘,不锈钢防风抑尘网,铝板防风抑尘网,镀铝锌防风抑尘网 | 硫化罐-胶管硫化罐-山东鑫泰鑫智能装备有限公司 | 液氨泵,液化气泵-淄博「亚泰」燃气设备制造有限公司 | 【孔氏陶粒】建筑回填陶粒-南京/合肥/武汉/郑州/重庆/成都/杭州陶粒厂家 | 黄石妇科医院_黄石东方女子医院_黄石东方妇产医院怎么样 | 兰州牛肉面加盟,兰州牛肉拉面加盟-京穆兰牛肉面| 仿古瓦,仿古金属瓦,铝瓦,铜瓦,铝合金瓦-西安东申景观艺术工程有限公司 | 安徽净化工程设计_无尘净化车间工程_合肥净化实验室_安徽创世环境科技有限公司 | 青岛侦探_青岛侦探事务所_青岛劝退小三_青岛婚外情取证-青岛王军侦探事务所 | 楼梯定制_楼梯设计施工厂家_楼梯扶手安装制作-北京凌步楼梯 | 衬四氟_衬氟储罐_四氟储罐-无锡市氟瑞特防腐科技有限公司 | 蜂窝块状沸石分子筛-吸附脱硫分子筛-萍乡市捷龙环保科技有限公司 |