ЈDW(wng)С
һI
Ǖ>
-
>
Ӻ`
-
>
ʷ
-
>
ϘO100
-
>
Д(sh)W(xu)}1200}
-
>
ϣ˹:ϵӡİl(f)cl(f)F(xin)
-
>
r(nng)ܯBʯ:10|ǰh(yun)źィĴ
-
>
(jin)ʷ
ЈDr(ji):¥36.3
ُ܇
(sh)W(xu)(sh)(yn)c(sh)W(xu)A(ch)(MATLAB(sh)F(xin)) (qun)Ϣ
- ISBN9787121441257
- lδa9787121441257 ; 978-7-121-44125-7
- bһz漈
- (c)(sh)o
- o
- ٷ>
(sh)W(xu)(sh)(yn)c(sh)W(xu)A(ch)(MATLAB(sh)F(xin)) (ni)ݺ(jin)
(ni)ݷ֞3֣1֞MATLABO(sh)Ӌ(j)A(ch)2֞锵(sh)W(xu)(sh)(yn)Ҫe(sh)(yn)Դ(sh)(sh)(yn)(sh)ֵӋ(j)㌍(sh)(yn)܃(yu)ģ͌(sh)(yn)SC(j)ģM(sh)(yn)(sh)(j)ģ(sh)(yn)3֞锵(sh)W(xu)ģA(ch)cҪ(sh)W(xu)A(ch)(yng)Ì(sh)(yn)c(sh)W(xu)ģ m顰(sh)W(xu)(sh)(yn)(sh)W(xu)ģP(gun)n̵Ľ̌W(xu)ҲmߵȌW(xu)УI(y)W(xu)(sh)W(xu)(sh)(yn)n̵Ľ̲ĺ͡(sh)W(xu)ģn̡(sh)W(xu)ģ(jng)ِӖ(xn)o(do)߀Ƽߵą
(sh)W(xu)(sh)(yn)c(sh)W(xu)A(ch)(MATLAB(sh)F(xin)) Ŀ
1 MATLABO(sh)Ӌ(j)A(ch)
1 wՓ 2
11 (sh)W(xu)(sh)(yn)ߺ(jin) 2
12 (sh)W(xu)(sh)(yn) 2
13 (sh)W(xu)(sh)(yn)Ĝ(zhn)֪R(sh) 5
14 һЩs 8
2 MATLABO(sh)Ӌ(j)A(ch) 10
21 ׃Ҏ(gu)t 12
22 Z 12
23 ׃xֲ׃ȫ׃ 12
24 (sh)MĄ(chung) 13
25 @ȡ(sh)MԪ 15
26 (sh)MԪصIJ 18
27 \(yn) 18
271 g(sh)\(yn) 18
272 P(gun)ϵ\(yn) 20
273 ߉\(yn) 21
28 ֧ДZ 21
281 ifZ 21
282 switchZ 23
29 ѭh(hun)Z 24
291 forѭh(hun) 24
292 whileѭh(hun) 25
293 Z 26
210 ú(sh) 28
2101 @ȡ(sh)MS(sh)Ϣ 28
2102 y(tng)Ӌ(j)(sh) 28
2103 cҺ(sh) 30
2104 ȡ(sh) 31
2105 \(yn) 31
2106 (sh) 32
2107 (yng)Ì(sh) 33
211 ݔ/ݔ(sh) 34
2111 ݔ뺯(sh)input 34
2112 @ʾ(sh)M(ni)ݺ(sh)disp 35
2113 ʽݔ(sh)sprintf 35
2114 ʽݔ(sh)fprintf 36
212 MATLABļc(sh) 36
2121 _ļ 36
2122 (sh)ļ 38
2123 Ӻ(sh) 40
2124 inline(chung)(sh) 41
2125 (sh)÷ 42
213 (yng)Ì(sh) 43
214 (x)} 44
3 MATLABLD(sh)ַcıļ 46
31 MATLABSgLD 46
311 plotLD 46
312 ezplotLD 47
313 fplotLD 48
314 oD(bio)עĺ(sh) 49
315 O(bio)LDpolar 49
316 lΈDLbarbar3 50
32 MATLABSgLD 51
321 plot3Lƿg 51
322 fplot3LD 52
323 oLD(sh)meshgrid 53
324 LD(sh)mesh(sh)surf(sh) 54
325 D(zhun)L 54
33 ַ(sh) 55
34 ļ(sh) 60
35 (x)} 64
4 (dng)O(sh)Ӌ(j)(sh)(yn) 65
41 (dng)O(sh)Ӌ(j)һ㷽 65
42 L(dng) 66
43 [(dng)(sh)(yn) 67
44 D(zhun)(dng) 69
45 (dng)aviļ 71
46 (x)} 72
2 (sh)W(xu)(sh)(yn)
5 e(sh)(yn) 74
51 ̖(ho)Ӌ(j)A(ch) 74
511 x̖(ho)׃syms 75
512 x̖(ho)׃sym 76
513 ̖(ho)_(d)ʽQsubs 77
514 ̖(ho)_(d)ʽĻ(jin) 77
515 ̖(ho)Ӌ(j)㾫ȼ䔵(sh)(j)D(zhun)Q 78
52 ÷̖(ho)Ӌ(j)㺯(sh) 78
521 (f)Ӌ(j)㺯(sh)compose 78
522 Ӌ(j)O(sh)limit 79
523 (do)Ӌ(j)㺯(sh)diff 80
524 ̖(ho)eֺ(sh)int 80
525 ̩ն(xing)ʽ(sh)taylor 81
53 Ocu 82
54 ̩ն(xing)ʽ(sh)(yn) 83
55 e(sh)(yn) 85
56 طeֵĎx 87
57 (sh)(yn)̽ 89
571 ҹc(din)Ć} 89
572 (sh)Č(do)(sh)c` 90
573 ㆖} 90
574 ~(j)(sh)Ľ 91
575 ˎ׃о 91
576 (sh)(yn)̽ʾ 91
58 (x)} 93
6 Դ(sh)(sh)(yn) 96
61 õľɺ(sh) 96
62 õľ\(yn)㺯(sh) 98
621 ⾀Է̽MAx=b 100
622 Ӌ(j)ֵeig 102
63 õľꇷֽ⺯(sh) 103
64 Դ(sh)(yng)Ì(sh)(yn) 105
641 Է̽MڜpʳV
еđ(yng) 105
642 Է̽MڻW(xu)(yng)ʽеđ(yng) 106
643 ꇵăcֵ 107
644 (jin)˿wģ 109
65 (sh)(yn)̽ 111
651 ꇳ˷ن} 111
652 ʽӋ(j)c 112
653 ׃Q̽ 115
654 Ă(g)ӿg 117
655 Givens׃QcHouseholder׃Q 118
656 (sh)(yn)̽ʾ 120
66 (x)} 123
7 ǾԷ(sh)(yn) 125
71 ַ 125
711 ַĻ˼ 125
712 ַ㷨(sh)F(xin)c(yng)Ì(sh) 125
72 (dng)c(din) 127
721 (dng)c(din)Ļ˼ 127
722 (dng)c(din)㷨(sh)F(xin) 127
723 (dng)c(din)ՔԷ 128
724 (yng)Ì(sh) 128
73 ţD 129
731 ţDĻ˼ 129
732 ţD㷨(sh)F(xin) 130
733 ţDՔԷ 130
734 (yng)Ì(sh) 131
74 MATLABܛǾԷ̵ĸ 132
741 (sh) 132
742 һǾԷ 132
75 (sh)(yn)̽ 133
76 (x)} 134
8 ֵcMό(sh)(yn) 135
81 ֵ 135
811 ֵ}Ļ˼ 135
812 ֵ}㷨(sh)F(xin) 136
813 MATLABֵ(sh) 139
82 M 139
821 Mφ}Ļ˼ 139
822 Mφ}㷨(sh)F(xin) 140
823 MATLABMϺ(sh) 141
83 (sh)(yn)̽ 142
84 (x)} 144
9 (sh)ֵec(sh)ֵ(sh)(yn) 146
91 (sh)ֵe 146
911 (sh)ֵeֆ} 146
912 (sh)ֵeֵĻԭ 146
913 MATLABД(sh)ֵeֵҪ(sh) 148
92 (sh)ֵ 150
921 (sh)ֵֆ} 150
922 (sh)ֵַ 150
923 (yng)Ì(sh) 152
93 (sh)(yn)̽ 152
94 (x)} 153
10 ַģ͌(sh)(yn) 154
101 ַ̔(sh)ֵ↖} 154
102 ̵ַĔ(sh)ֵⷨ 154
1021 W 154
1022 M(jn)ĚW 156
1023 һAַ̽McA̵ַĽⷨ 157
103 MATLABⳣַ̺(sh) 159
1031 (yng)Ì(sh)Logisticģ 159
1032 (yng)Ì(sh)һ(zhn)ģ 160
104 (sh)(yn)̽ 162
105 (x)} 162
11 *(yu)ģ͌(sh)(yn) 164
111 *(yu)A(ch) 164
1111 *(yu)(sh)W(xu)ģ 166
1112 ½㷨 167
1113 ֲOСc(din)ȫ֘OСc(din) 167
1114 MATLAB(yu)Ҫ⺯(sh)(jin) 168
112 os(yu)} 168
1121 һԪ(sh)Oֵ}c⺯(sh)fminbnd 168
1122 ԪosOֵ}c⺯(sh)fminsearchfminunc 171
113 s(yu)} 172
1131 Ҏ(gu)c⺯(sh)linprog 172
1132 (sh)Ҏ(gu)c⺯(sh)intlinprog 175
1133 ǾҎ(gu)c⺯(sh)fmincon 178
114 ܃(yu) 183
1141 z㷨 183
1142 Ⱥ(yu) 185
1143 ģM˻ 188
115 (sh)(yn)̽ 190
116 (x)} 190
12 SC(j)ģM(sh)(yn) 193
121 SC(j)(sh) 193
1211 MATLABSC(j)(sh) 193
1212 ú(sh)׃QSC(j)(sh) 196
122 ؿ_ 202
1221 ؿ_ڸӋ(j)еđ(yng) 202
1222 ؿ_ڷe\(yn)̓(yu)}еđ(yng) 206
1223 ؿ_ϵy(tng)ģMеđ(yng) 211
123 (sh)(yn)̽ 219
124 (x)} 220
13 (sh)(j)ģ(sh)(yn) 223
131 Իؚw 223
1311 ԪԻؚwģ 224
1312 ԪԻؚw(sh)(yn) 225
132 226
1321 K-means㷨 227
1322 K-means(sh)(yn) 227
133 (sh)(yn) 229
1331 SVM㷨 230
1332 SVM㷨(sh)(yn) 230
134 ɷַ 231
1341 ɷַĻԭ 232
1342 ɷַӋ(j)㲽E 233
1343 ɷַ(sh)(yn) 234
135 (sh)(yn)̽ 235
136 (x)} 236
3 (sh)W(xu)ģA(ch)c
14 (sh)W(xu)A(ch) 241
141 241
1411 (sh)W(xu)ģ^ 241
1412 (sh)W(xu)ģĎׂ(g)yc(din) 241
1413 (sh)W(xu)ģķ 242
1414 (sh)W(xu)ģһЩA(ch)֪R(sh) 242
142 Ҋ(sh)W(xu)ģc(sh)W(xu) 244
1421 *(yu)ģ 245
1422 ַģ 247
1423 ģ 249
1424 ֵcMϷ 251
1425 ؚwģ 255
1426 DՓģ 255
1427 SC(j)ģMģ 256
143 (x)} 259
15 (yng)Ì(sh)(yn)c(sh)W(xu)ģ 260
151 (yng)Ì(sh)(yn)Google 260
1511 } 260
1512 } 262
152 (yng)Ì(sh)(yn)cҎ(gu)tDeӋ(j) 264
1521 } 264
1522 } 265
153 *(yu)~Եă(yu)O(sh)Ӌ(j) 267
1531 } 267
1532 } 268
1533 ģͼO(sh) 268
1534 ׃c̖(ho)f 268
1535 ģͽ 269
1536 ģ 271
154 DVDھU}Ľģc 273
1541 } 273
1542 } 274
1543 ģͼO(sh) 275
1544 ׃c̖(ho)f 275
1545 ģͽ 275
1546 ģ 277
īI(xin) 282
1 wՓ 2
11 (sh)W(xu)(sh)(yn)ߺ(jin) 2
12 (sh)W(xu)(sh)(yn) 2
13 (sh)W(xu)(sh)(yn)Ĝ(zhn)֪R(sh) 5
14 һЩs 8
2 MATLABO(sh)Ӌ(j)A(ch) 10
21 ׃Ҏ(gu)t 12
22 Z 12
23 ׃xֲ׃ȫ׃ 12
24 (sh)MĄ(chung) 13
25 @ȡ(sh)MԪ 15
26 (sh)MԪصIJ 18
27 \(yn) 18
271 g(sh)\(yn) 18
272 P(gun)ϵ\(yn) 20
273 ߉\(yn) 21
28 ֧ДZ 21
281 ifZ 21
282 switchZ 23
29 ѭh(hun)Z 24
291 forѭh(hun) 24
292 whileѭh(hun) 25
293 Z 26
210 ú(sh) 28
2101 @ȡ(sh)MS(sh)Ϣ 28
2102 y(tng)Ӌ(j)(sh) 28
2103 cҺ(sh) 30
2104 ȡ(sh) 31
2105 \(yn) 31
2106 (sh) 32
2107 (yng)Ì(sh) 33
211 ݔ/ݔ(sh) 34
2111 ݔ뺯(sh)input 34
2112 @ʾ(sh)M(ni)ݺ(sh)disp 35
2113 ʽݔ(sh)sprintf 35
2114 ʽݔ(sh)fprintf 36
212 MATLABļc(sh) 36
2121 _ļ 36
2122 (sh)ļ 38
2123 Ӻ(sh) 40
2124 inline(chung)(sh) 41
2125 (sh)÷ 42
213 (yng)Ì(sh) 43
214 (x)} 44
3 MATLABLD(sh)ַcıļ 46
31 MATLABSgLD 46
311 plotLD 46
312 ezplotLD 47
313 fplotLD 48
314 oD(bio)עĺ(sh) 49
315 O(bio)LDpolar 49
316 lΈDLbarbar3 50
32 MATLABSgLD 51
321 plot3Lƿg 51
322 fplot3LD 52
323 oLD(sh)meshgrid 53
324 LD(sh)mesh(sh)surf(sh) 54
325 D(zhun)L 54
33 ַ(sh) 55
34 ļ(sh) 60
35 (x)} 64
4 (dng)O(sh)Ӌ(j)(sh)(yn) 65
41 (dng)O(sh)Ӌ(j)һ㷽 65
42 L(dng) 66
43 [(dng)(sh)(yn) 67
44 D(zhun)(dng) 69
45 (dng)aviļ 71
46 (x)} 72
2 (sh)W(xu)(sh)(yn)
5 e(sh)(yn) 74
51 ̖(ho)Ӌ(j)A(ch) 74
511 x̖(ho)׃syms 75
512 x̖(ho)׃sym 76
513 ̖(ho)_(d)ʽQsubs 77
514 ̖(ho)_(d)ʽĻ(jin) 77
515 ̖(ho)Ӌ(j)㾫ȼ䔵(sh)(j)D(zhun)Q 78
52 ÷̖(ho)Ӌ(j)㺯(sh) 78
521 (f)Ӌ(j)㺯(sh)compose 78
522 Ӌ(j)O(sh)limit 79
523 (do)Ӌ(j)㺯(sh)diff 80
524 ̖(ho)eֺ(sh)int 80
525 ̩ն(xing)ʽ(sh)taylor 81
53 Ocu 82
54 ̩ն(xing)ʽ(sh)(yn) 83
55 e(sh)(yn) 85
56 طeֵĎx 87
57 (sh)(yn)̽ 89
571 ҹc(din)Ć} 89
572 (sh)Č(do)(sh)c` 90
573 ㆖} 90
574 ~(j)(sh)Ľ 91
575 ˎ׃о 91
576 (sh)(yn)̽ʾ 91
58 (x)} 93
6 Դ(sh)(sh)(yn) 96
61 õľɺ(sh) 96
62 õľ\(yn)㺯(sh) 98
621 ⾀Է̽MAx=b 100
622 Ӌ(j)ֵeig 102
63 õľꇷֽ⺯(sh) 103
64 Դ(sh)(yng)Ì(sh)(yn) 105
641 Է̽MڜpʳV
еđ(yng) 105
642 Է̽MڻW(xu)(yng)ʽеđ(yng) 106
643 ꇵăcֵ 107
644 (jin)˿wģ 109
65 (sh)(yn)̽ 111
651 ꇳ˷ن} 111
652 ʽӋ(j)c 112
653 ׃Q̽ 115
654 Ă(g)ӿg 117
655 Givens׃QcHouseholder׃Q 118
656 (sh)(yn)̽ʾ 120
66 (x)} 123
7 ǾԷ(sh)(yn) 125
71 ַ 125
711 ַĻ˼ 125
712 ַ㷨(sh)F(xin)c(yng)Ì(sh) 125
72 (dng)c(din) 127
721 (dng)c(din)Ļ˼ 127
722 (dng)c(din)㷨(sh)F(xin) 127
723 (dng)c(din)ՔԷ 128
724 (yng)Ì(sh) 128
73 ţD 129
731 ţDĻ˼ 129
732 ţD㷨(sh)F(xin) 130
733 ţDՔԷ 130
734 (yng)Ì(sh) 131
74 MATLABܛǾԷ̵ĸ 132
741 (sh) 132
742 һǾԷ 132
75 (sh)(yn)̽ 133
76 (x)} 134
8 ֵcMό(sh)(yn) 135
81 ֵ 135
811 ֵ}Ļ˼ 135
812 ֵ}㷨(sh)F(xin) 136
813 MATLABֵ(sh) 139
82 M 139
821 Mφ}Ļ˼ 139
822 Mφ}㷨(sh)F(xin) 140
823 MATLABMϺ(sh) 141
83 (sh)(yn)̽ 142
84 (x)} 144
9 (sh)ֵec(sh)ֵ(sh)(yn) 146
91 (sh)ֵe 146
911 (sh)ֵeֆ} 146
912 (sh)ֵeֵĻԭ 146
913 MATLABД(sh)ֵeֵҪ(sh) 148
92 (sh)ֵ 150
921 (sh)ֵֆ} 150
922 (sh)ֵַ 150
923 (yng)Ì(sh) 152
93 (sh)(yn)̽ 152
94 (x)} 153
10 ַģ͌(sh)(yn) 154
101 ַ̔(sh)ֵ↖} 154
102 ̵ַĔ(sh)ֵⷨ 154
1021 W 154
1022 M(jn)ĚW 156
1023 һAַ̽McA̵ַĽⷨ 157
103 MATLABⳣַ̺(sh) 159
1031 (yng)Ì(sh)Logisticģ 159
1032 (yng)Ì(sh)һ(zhn)ģ 160
104 (sh)(yn)̽ 162
105 (x)} 162
11 *(yu)ģ͌(sh)(yn) 164
111 *(yu)A(ch) 164
1111 *(yu)(sh)W(xu)ģ 166
1112 ½㷨 167
1113 ֲOСc(din)ȫ֘OСc(din) 167
1114 MATLAB(yu)Ҫ⺯(sh)(jin) 168
112 os(yu)} 168
1121 һԪ(sh)Oֵ}c⺯(sh)fminbnd 168
1122 ԪosOֵ}c⺯(sh)fminsearchfminunc 171
113 s(yu)} 172
1131 Ҏ(gu)c⺯(sh)linprog 172
1132 (sh)Ҏ(gu)c⺯(sh)intlinprog 175
1133 ǾҎ(gu)c⺯(sh)fmincon 178
114 ܃(yu) 183
1141 z㷨 183
1142 Ⱥ(yu) 185
1143 ģM˻ 188
115 (sh)(yn)̽ 190
116 (x)} 190
12 SC(j)ģM(sh)(yn) 193
121 SC(j)(sh) 193
1211 MATLABSC(j)(sh) 193
1212 ú(sh)׃QSC(j)(sh) 196
122 ؿ_ 202
1221 ؿ_ڸӋ(j)еđ(yng) 202
1222 ؿ_ڷe\(yn)̓(yu)}еđ(yng) 206
1223 ؿ_ϵy(tng)ģMеđ(yng) 211
123 (sh)(yn)̽ 219
124 (x)} 220
13 (sh)(j)ģ(sh)(yn) 223
131 Իؚw 223
1311 ԪԻؚwģ 224
1312 ԪԻؚw(sh)(yn) 225
132 226
1321 K-means㷨 227
1322 K-means(sh)(yn) 227
133 (sh)(yn) 229
1331 SVM㷨 230
1332 SVM㷨(sh)(yn) 230
134 ɷַ 231
1341 ɷַĻԭ 232
1342 ɷַӋ(j)㲽E 233
1343 ɷַ(sh)(yn) 234
135 (sh)(yn)̽ 235
136 (x)} 236
3 (sh)W(xu)ģA(ch)c
14 (sh)W(xu)A(ch) 241
141 241
1411 (sh)W(xu)ģ^ 241
1412 (sh)W(xu)ģĎׂ(g)yc(din) 241
1413 (sh)W(xu)ģķ 242
1414 (sh)W(xu)ģһЩA(ch)֪R(sh) 242
142 Ҋ(sh)W(xu)ģc(sh)W(xu) 244
1421 *(yu)ģ 245
1422 ַģ 247
1423 ģ 249
1424 ֵcMϷ 251
1425 ؚwģ 255
1426 DՓģ 255
1427 SC(j)ģMģ 256
143 (x)} 259
15 (yng)Ì(sh)(yn)c(sh)W(xu)ģ 260
151 (yng)Ì(sh)(yn)Google 260
1511 } 260
1512 } 262
152 (yng)Ì(sh)(yn)cҎ(gu)tDeӋ(j) 264
1521 } 264
1522 } 265
153 *(yu)~Եă(yu)O(sh)Ӌ(j) 267
1531 } 267
1532 } 268
1533 ģͼO(sh) 268
1534 ׃c̖(ho)f 268
1535 ģͽ 269
1536 ģ 271
154 DVDھU}Ľģc 273
1541 } 273
1542 } 274
1543 ģͼO(sh) 275
1544 ׃c̖(ho)f 275
1545 ģͽ 275
1546 ģ 277
īI(xin) 282
չ_ȫ
(sh)W(xu)(sh)(yn)c(sh)W(xu)A(ch)(MATLAB(sh)F(xin)) ߺ(jin)
£ӿƼW(xu)(sh)W(xu)(sh)(yn)ҾƷھ_n"(sh)W(xu)(sh)(yn)(ЇW(xu)MOOC)nؓ(f)؟(z)Г(dn)***(xing)Ŀ(xing)@***̌W(xu)ɹһȪ(jing)1(xing)
]
- >
Ԣ-ČW(xu)-ȫg
- >
ͽ˼
- >
_ӹ(lin)n
- >
c؉
- >
?gu)xѸ:¾
- >
ҏδ˾g
- >
- >
ԱcԽ
N