中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
線性代數導引

包郵 線性代數導引

出版社:科學出版社出版時間:2022-01-01
開本: 16開 頁數: 221
本類榜單:自然科學銷量榜
中 圖 價:¥59.5(7.6折) 定價  ¥78.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

線性代數導引 版權信息

  • ISBN:9787030721631
  • 條形碼:9787030721631 ; 978-7-03-072163-1
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

線性代數導引 內容簡介

近年來,隨著能源環境問題日益凸顯和輕量化設計制造的需求日益迫切,航空航天、軌道交通、節能汽車等高技術領域對原位鋁基復合材料的需求潛力巨大,且對其綜合性能的要求也越來越高。本書較系統、詳細地介紹了原位鋁基復合材料的體系設計、材料開發、制備技術、凝固組織、塑變加工及性能。全書共八章,主要內容包括:原位反應體系的設計與開發、電磁法合成原位鋁基復合材料、高能超聲法合成原位鋁基復合材料、聲磁耦合法合成原位鋁基復合材料、原位鋁基復合材料的凝固組織及界面結構、塑變加工對原位鋁基復合材料組織的影響、原位鋁基復合材料的力學性能、原位鋁基復合材料的磨損性能。內容豐富、新穎,具有系統性和前瞻性,反映了作者團隊二十余年來在原位鋁基復合材料領域的科研成果。

線性代數導引 目錄

Contents
Chapter 1 Linear Systems and Matrices 1
1.1 Introduction to Linear Systems and Matrices 1
1.1.1 Linear equations and linear systems 1
1.1.2 Matrices 3
1.1.3 Elementary row operations 4
1.2 Gauss-Jordan Elimination 5
1.2.1 Reduced row-echelon form 5
1.2.2 Gauss-Jordan elimination 6
1.2.3 Homogeneous linear systems 9
1.3 Matrix Operations 11
1.3.1 Operations on matrices 11
1.3.2 Partition of matrices 13
1.3.3 Matrix product by columns and by rows 13
1.3.4 Matrix product of partitioned matrices 14
1.3.5 Matrix form of a linear system 15
1.3.6 Transpose and trace of a matrix 16
1.4 Rules of Matrix Operations and Inverses 18
1.4.1 Basic properties of matrix operations 19
1.4.2 Identity matrix and zero matrix 20
1.4.3 Inverse of a matrix 21
1.4.4 Powers of a matrix 23
1.5  Elementary Matrices and a Method for Finding A.1 24
1.5.1 Elementary matrices and their properties 24
1.5.2 Main theorem of invertibility 26
1.5.3 A method for finding A.1 27
1.6 Further Results on Systems and Invertibility 28
1.6.1 A basic theorem 28
1.6.2 Properties of invertible matrices 29
1.7 Some Special Matrices 31
1.7.1 Diagonal and triangular matrices 32
1.7.2 Symmetric matrix 34
Exercises 35
Chapter 2 Determinants 42
2.1 Determinant Function 42
2.1.1 Permutation, inversion, and elementary product 42
2.1.2 Definition of determinant function 44
2.2 Evaluation of Determinants 44
2.2.1 Elementary theorems 44
2.2.2 A method for evaluating determinants 46
2.3 Properties of Determinants 46
2.3.1 Basic properties 47
2.3.2 Determinant of a matrix product 48
2.3.3 Summary 50
2.4 Cofactor Expansions and Cramer’s Rule 51
2.4.1 Cofactors 51
2.4.2 Cofactor expansions 51
2.4.3 Adjoint of a matrix 53
2.4.4 Cramer’s rule 54
Exercises 55
Chapter 3 Euclidean Vector Spaces 61
3.1 Euclidean n-Space 61
3.1.1 n-vector space 61
3.1.2 Euclidean n-space 62
3.1.3 Norm, distance, angle, and orthogonality 63
3.1.4 Some remarks 65
3.2 Linear Transformations from Rn to Rm 66
3.2.1 Linear transformations from Rn to Rm 66
3.2.2 Some important linear transformations 67
3.2.3 Compositions of linear transformations 69
3.3 Properties of Transformations 70
3.3.1 Linearity conditions 70
3.3.2 Example 71
3.3.3 One-to-one transformations 72
3.3.4 Summary 73
Exercises 74
Chapter 4 General Vector Spaces 79
4.1 Real Vector Spaces 79
4.1.1 Vector space axioms 79
4.1.2 Some properties 81
4.2 Subspaces 81
4.2.1 Definition of subspace 82
4.2.2 Linear combinations 83
4.3 Linear Independence 85
4.3.1 Linear independence and linear dependence 86
4.3.2  Some theorems 87
4.4 Basis and Dimension 88
4.4.1 Basis for vector space 88
4.4.2 Coordinates 89
4.4.3 Dimension 91
4.4.4 Some fundamental theorems 93
4.4.5 Dimension theorem for subspaces 95
4.5 Row Space, Column Space, and Nullspace 97
4.5.1 Definition of row space, column space, and nullspace 97
4.5.2 Relation between solutions of Ax = 0 and Ax=b 98
4.5.3 Bases for three spaces 100
4.5.4 A procedure for finding a basis for span(S) 102
4.6 Rank and Nullity 103
4.6.1 Rank and nullity 104
4.6.2 Rank for matrix operations 106
4.6.3 Consistency theorems 107
4.6.4 Summary 109
Exercises 110
Chapter 5 Inner Product Spaces 115
5.1 Inner Products 115
5.1.1 General inner products 115
5.1.2 Examples 116
5.2 Angle and Orthogonality 119
5.2.1 Angle between two vectors and orthogonality 119
5.2.2 Properties of length, distance, and orthogonality 120
5.2.3 Complement 121
5.3 Orthogonal Bases and Gram-Schmidt Process 122
5.3.1 Orthogonal and orthonormal bases 122
5.3.2 Projection theorem 125
5.3.3 Gram-Schmidt process 128
5.3.4 QR-decomposition 130
5.4 Best Approximation and Least Squares 133
5.4.1 Orthogonal projections viewed as approximations 134
5.4.2 Least squares solutions of linear systems 135
5.4.3 Uniqueness of least squares solutions 136
5.5 Orthogonal Matrices and Change of Basis. 138
5.5.1 Orthogonal matrices 138
5.5.2 Change of basis 140
Exercises 144
Chapter 6 Eigenvalues and Eigenvectors 149
6.1 Eigenvalues and Eigenvectors 149
6.1.1 Introduction to eigenvalues and eigenvectors 149
6.1.2 Two theorems concerned with eigenvalues 150
6.1.3 Bases for eigenspaces 151
6.2 Diagonalization 152
6.2.1 Diagonalization problem 152
6.2.2 Procedure for diagonalization 153
6.2.3 Two theorems concerned with diagonalization 155
6.3 Orthogonal Diagonalization 156
6.4 Jordan Decomposition Theorem 160
Exercises 162
Chapter 7 Linear Transformations 166
7.1 General Linear Transformations 166
7.1.1 Introduction to linear transformations 166
7.1.
展開全部

線性代數導引 節選

Chapter 1 Linear Systems and Matrices “No beginner’s course in mathematics can do without linear algebra,” —Lars Garding “Matrices act They don’t just sit there.” —Gilbert Strang Solving linear systems (a system of linear equations) is the most important problem of linear algebra and possibly of applied mathematics as well. Usually, information in a linear system is often arranged into a rectangular array, called a “matrix”. The matrix is particularly important in developing computer programs to solve linear systems with huge sizes because computers are suitable to manage numerical data in arrays. Moreover, matrices are not only a simple tool for solving linear systems but also mathematical objects in their own right. In fact, matrix theory has a variety of applications in science, engineering, and mathematics. Therefore, we begin our study on linear systems and matrices in the first chapter. 1.1 Introduction to Linear Systems and Matrices Let IR denote the set of real numbers. We now introduce linear equations, linear systems, and matrices. 1.1.1 Linear equations and linear systems We consider where are coefficients,are variables (unknowns), n is a positive integer, and 6 G R is a constant. An equation of this form is called a Zinear equation, in which all variables occur to the first power., the linear equation is called a homogeneous linear equation. A sequence of numbers si, sn is called a solution of the equation if,xn = sn such that The set of all solutions of the equation is called the solution set of the equation. In the book, we always use example(s) to make our points clear. Example We consider the following linear equations: (a) (b) It is easy to see that the solution set of (a) is a line in xy-plane and the solution set of (b) is a plane in xyz-space. We next consider the following m linear equations in n variables: (1-1) where are coefficients,are variables, and bi are constants. A system of linear equations in this form is called a linear system. A sequence of numbers si,is called a solution of the system if,is a solution of each equation in the system. A linear system is said to be consistent if it has at least one solution.Otherwise, a linear system is said to be inconsistent if it has no solution. Example Consider the following linear system The graphs of these equations are lines called li and We have three possible cases of lines l\ and I2 in xy-plane. See Figure 1.1. When l\ and I2 are parallel, there is no solution of the system. When li and I2 intersect at only one point, there is exactly one solution of the system. When l1 and I2 coincide, there are infinitely many solutions of the system. Figure 1.1 1.1.2 Matrices The term matrix was first introduced by a British mathematician James Sylvester in the 19th century. Another British mathematician Arthur Cayley developed basic algebraic operations on matrices in the 1850s. Up to now, matrices have become the language to know. Definition A matrix is a rectangular array of numbers. The numbers in the array are called the entries in the matrix. Remark The size of a matrix is described in terms of the number of rows and columns it contains. Usually, a matrix with m rows and n columns is called an m x n matrix. If A is an m x n matrix, then we denote the entry in row i and column j of A by the symbol (A)ij = a々.Moreover, a matrix with real entries will be called a real matrix and the set of all m x n real matrices will be denoted by the symbol Rmxn. For instance, a matrix A in IRmxn can be written as where G IR for any i and j. When compactness of notation is desired, the preceding matrix can be written as We now introduce some important matrices with special sizes. A row matrix is a general 1 x n matrix a given by The main diagonal of the square matrix A is the set of entries an, (1.2) For linear system (1.1), we can write it briefly as the following matrix form which is called the augmented matrix of (1.1). Remark When we construct an augmented matrix associated with a given linear system, the unknowns must be written in the same order in each equation and the constants must be on the right. 1.1.3 Elementary row operations In order to solve a linear system efficiently, we replace the given system with its augmented matrix and then solve the same system by operating on the rows of the augmented matrix. There are three elementary row operations on matrices defined as follows: (1) Interchange two rows. (2) Multiply a row by a nonzero number. (3) Add a multiple of one row to another row. By using elementary row operations, we can always reduce the augmented matrix of a given system to a simpler augmented matrix from which the solution of the system is evident. See the following example. 1.2 Gauss-Jordan Elimination In this s

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 模切之家-专注服务模切行业的B2B平台!| 写方案网_方案策划方案模板下载| 动物解剖台-成蚊接触筒-标本工具箱-负压实验台-北京哲成科技有限公司 | 不锈钢散热器,冷却翅片管散热器厂家-无锡市烨晟化工装备科技有限公司 | 杰恒蠕动泵-蠕动泵专业厂家-19年专注蠕动泵 | 在线PH计-氧化锆分析仪-在线浊度仪-在线溶氧仪- 无锡朝达 | 体视显微镜_荧光生物显微镜_显微镜报价-微仪光电生命科学显微镜有限公司 | 防火门-专业生产甲级不锈钢钢质防火门厂家资质齐全-广东恒磊安防设备有限公司 | 捆扎机_气动捆扎机_钢带捆扎机-沈阳海鹞气动钢带捆扎机公司 | 室内室外厚型|超薄型|非膨胀型钢结构防火涂料_隧道专用防火涂料厂家|电话|价格|批发|施工 | 上海律师咨询_上海法律在线咨询免费_找对口律师上策法网-策法网 广东高华家具-公寓床|学生宿舍双层铁床厂家【质保十年】 | 广州监控安装公司_远程监控_安防弱电工程_无线wifi覆盖_泉威安防科技 | 体坛网_体坛+_体坛周报新闻客户端| 铝合金重力铸造_铝合金翻砂铸造_铝铸件厂家-东莞市铝得旺五金制品有限公司 | 动库网动库商城-体育用品专卖店:羽毛球,乒乓球拍,网球,户外装备,运动鞋,运动包,运动服饰专卖店-正品运动品网上商城动库商城网 - 动库商城 | 2025世界机器人大会_IC China_半导体展_集成电路博览会_智能制造展览网 | 中式装修设计_全屋定制家具_实木仿古门窗花格厂家-喜迎门 | 智成电子深圳tdk一级代理-提供TDK电容电感贴片蜂鸣器磁芯lambda电源代理经销,TDK代理商有哪些TDK一级代理商排名查询。-深圳tdk一级代理 | 宝元数控系统|对刀仪厂家|东莞机器人控制系统|东莞安川伺服-【鑫天驰智能科技】 | 微波萃取合成仪-电热消解器价格-北京安合美诚科学仪器有限公司 | 电动葫芦-河北悍象起重机械有限公司| LED灯杆屏_LED广告机_户外LED广告机_智慧灯杆_智慧路灯-太龙智显科技(深圳)有限公司 | 全自动不干胶贴标机_套标机-上海今昂贴标机生产厂家 | 过跨车_过跨电瓶车_过跨转运车_横移电动平车_厂区转运车_无轨转运车 | 美国查特CHART MVE液氮罐_查特杜瓦瓶_制造全球品质液氮罐 | 智慧消防-消防物联网系统云平台| 生产自动包装秤_颗粒包装秤_肥料包装秤等包装机械-郑州鑫晟重工科技有限公司 | 圣才学习网-考研考证学习平台,提供万种考研考证电子书、题库、视频课程等考试资料 | 瑞典Blueair空气净化器租赁服务中心-专注新装修办公室除醛去异味服务! | 环保袋,无纺布袋,无纺布打孔袋,保温袋,环保袋定制,环保袋厂家,环雅包装-十七年环保袋定制厂家 | 石膏基自流平砂浆厂家-高强石膏基保温隔声自流平-轻质抹灰石膏粉砂浆批发-永康市汇利建设有限公司 | 软文发布-新闻发布推广平台-代写文章-网络广告营销-自助发稿公司媒介星 | 家庭教育吧-在线家庭教育平台,专注青少年家庭教育 | 软启动器-上海能曼电气有限公司| 北京易通慧公司从事北京网站优化,北京网络推广、网站建设一站式服务商-北京网站优化公司 | 交通气象站_能见度检测仪_路面状况监测站- 天合环境科技 | 玖容气动液压设备有限公司-气液增压缸_压力机_增压机_铆接机_增压器 | 电线电缆厂家|沈阳电缆厂|电线厂|沈阳英联塑力线缆有限公司 | 安规_综合测试仪,电器安全性能综合测试仪,低压母线槽安规综合测试仪-青岛合众电子有限公司 | 冷镦机-多工位冷镦机-高速冷镦机厂家-温州金诺机械设备制造有限公司 | 仓储笼_仓储货架_南京货架_仓储货架厂家_南京货架价格低-南京一品仓储设备制造公司 |