中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)
> >
非線性自治動(dòng)力系統(tǒng)的吸引子(英文)

包郵 非線性自治動(dòng)力系統(tǒng)的吸引子(英文)

作者:秦玉明
出版社:科學(xué)出版社出版時(shí)間:2022-07-01
開本: B5 頁(yè)數(shù): 224
中 圖 價(jià):¥102.4(8.0折) 定價(jià)  ¥128.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車 收藏
開年大促, 全場(chǎng)包郵
?新疆、西藏除外
本類五星書更多>

非線性自治動(dòng)力系統(tǒng)的吸引子(英文) 版權(quán)信息

  • ISBN:9787030702500
  • 條形碼:9787030702500 ; 978-7-03-070250-0
  • 裝幀:一般膠版紙
  • 冊(cè)數(shù):暫無(wú)
  • 重量:暫無(wú)
  • 所屬分類:>

非線性自治動(dòng)力系統(tǒng)的吸引子(英文) 內(nèi)容簡(jiǎn)介

Thisbookisbasedonthefirstauthor''''slecture"Infinite-dimensionaldynamicalsystemsonnonlinearautonomoussystems"tobegiventograduatestudentsinDonghuaUniversitysince2004.Itisaimedatpresentingcompleteandsystematictheoriesofinfinite-dimensionaldynamicalsystemsandtheirapplicationsinpartialdifferentialequations,espelyinthemodelsoffluidmechanics.Thisbookaimstopresentsomerecentresultsonsomeautonomousnonlinearevolutionaryequationsaarisingfromphysics,fluidmechanicsandmaterialsciencesuchastheNavier-Stokesequations,Navier-Stokes-Voightsystems,thenonlinearthermoviscoelasticsystem,etc.Mostofmaterialsofthisbookarebasedontheresearchcarriedoutbytheauthorsinrecentyears.Someofthemhadbeenpreviouslypublishedonlyinoriginalpapers,andsomeofthematerialhaveneverbeenpublisheduntilnow.

非線性自治動(dòng)力系統(tǒng)的吸引子(英文) 目錄

Contents
Preface i
CHAPTER 1
Preliminary 1
1.1 Some Useful Inequalities 1
1.2 Basic Theory of Infinite-Dimensional Dynamical Systems for Autonomous Nonlinear Evolutionary Equations 10
1.2.1 Uniformly Compact Semigroups 10
1.2.2 Weakly Compact Semigroups 16
1.2.3 Q-Limit Compact Semigroups 17
1.2.4 Asymptotically Compact Semigroups 22
1.2.5 Asymptotically Smooth Semigroups 27
1.2.6 Norm-to-Weak Continuous Semigroups 28
1.2.7 Closed Operator Semigroups 30
1.3 Basic Theory of Finite-Dimensional Attractors 32
1.3.1 The Fractal Dimension of Global Attractors 32
1.3.2 The Estimate on Fractal Dimension of Global Attractors 33
CHAPTER 2 Global Attractors for the Navier-Stokes-Voight Equations with Delay 37
2.1 Global Wellposedness of Solutions 37
2.2 Existence of Global Attractors 43
2.2.1 Dissipation: Existence of Absorbing Sets 43
2.2.2 Asymptotical Compactness and Existence of Attractor 44
2.3 Bibliographic Comments 46
CHAPTER 3 Global Attractor and Its Upper Estimate on Fractal Dimension for the 2D Navier-Stokes-Voight Equations 47
3.1 Global Existence of Solutions 47
3.2 Existence of Global Attractors 55
3.2.1 Existence of Absorbing Sets 55
3.2.2 Some Compactness and the Existence of Global Attractors 56
3.3 Upper Estimate on the Fractal Dimension of Global Attractors 58
3.4 Bibliographic Comments 64
CHAPTER 4 Maximal Attractor for the Equations of One-Dimensional Compressible Polytropic Viscous Ideal Gas 67
41 Our Problem 67
4.2 Nonlinear Semigroup on 69
4.3 Existence of an Absorbing Set in 73
4.4 Existence of an Absorbing Set in 83
4.5 Proof of Theorem 4.2.1 86
4.6 Bibliographic Comments 88
CHAPTER 5 Universal Attractors for a Nonlinear System of Compressible One-Dimensional Heat-Conducting Viscous Real Gas 91
5.1 Main Results 91
5.2 Nonlinear Co-Semigroup on 95
5.3 Existence of an Absorbing Set in 97
5.4 Existence of an Absorbing Set in 106
5.5 Proof of Theorem 5.1.1 108
5.6 Bibliographic Comments 111
CHAPTER 6 Global Attractors for the Compressible Navier-Stokes Equations in Bounded Annular Domains 115
6.1 Main Result 115
6.2 Nonlinear Semigroup on 119
6.3 Existence of an Absorbing Set in 120
6.4 Existence of an Absorbing Set in 129
6.5 Existence of an Absorbing Set in 135
6.6 Bibliographic Comments 146
CHAPTER 7 Global Attractor for a Nonlinear Thermoviscoelastic System in Shape Memory Alloys 149
7.1 Main Result 149
7.2 An Absorbing Set in Hs 152
7.3 Compactness of the Orbit in Hs 165
7.4 Bibliographic Comments 173
CHAPTER 8 Global Attractors for Nonlinear Reaction-Diffusion Equations and the 2D Navier-Stokes Equations 175
8.1 Global Attractor for Strong Solutions of Reaction-Diffusion Equations 175
8.1.1 Existence of Solutions and Uniqueness 176
8.1.2 Global Attractor for the Semigroup in 176
8.1.3 Global Attractor of System in and 177
8.2 Global Attractors for the 2D Navier-Stokes Equations in 183
CHAPTER 9 Global Attractors for an Incompressible Fluid Equation and a Wave Equation 187
9.1 An Incompressible Fluid Equation 187
9.2 A Wave Equation with Nonlinear Damping 193
9.2.1 Wellposedness of Solutions 194
9.2.2 Dissipativity 196
9.2.3 Asymptotic Compactness and Existence of Global Attractor 200
References 203
Index 211
展開全部

非線性自治動(dòng)力系統(tǒng)的吸引子(英文) 節(jié)選

Chapter 1 Preliminary In this chapter, we shall recall some basic knowledge in functional analysis (harmonic analysis) and idds for nonlinear evolutionary equations, most of which will be used in the subsequent chapters. The reader can easily find the detailed proofs in the related literature, see, e.g., Adams [1], Babin and Vishik [5],Chemin [20],Chepyzhov and Vishik [24], Constantin and Foias [27],Evans [30],Hale [54], Hille and Phillips [57], Kato [93],Ladyzhenskaya [74,75],Lemarie-Rieusse [76], Lions [78], Liu and Zheng [81], Lorentz [82],Liu and Zheng [80],Maz,ja [89],Miao [90, 91], Nirenberg [97], Novotny and Strauskraba [98], Pazy [104], Qin [112], Robinson [125], Rudin [126], Sell and You [129], Serrin [130], Smoller [135], Sobolev [136], Sogge [137],Sohr [138], Stein [141], Temam, Babin and Vishik [5],Sell and You [129], Temam [144-146], Triebel [147,148], Walter [150], Yosida [155],Zheng [156, 157], Zhongj Fan and Chen [161],etc. 1.1 Some Useful Inequalities In this section, we shall recall some inequalities which will be used in the subsequent chapters. Throughout next chapters, we set, C will stand for a generic positive constant, depending on Q and some constants, but independent of the choice of the initial time and t. We introduce the Hausdorff semi-distance in X between two sets and. We set, divu, H is the closure of the set E infe topology, V is the closure of the set E in topology, W is the closure of the set E in (H2(Q))k topology, i.e., (1.1.1) (1.1.2) P is the Helmholz-Leray orthogonal projection in onto the space is the Stokes operator subject to the nonslip homogeneous Dirichlet boundary condition with the domain,and A is a self-adjoint positively defined operator on H. is a compact operator from H to H. The sequence {cOj}^ is an orthonormal system of eigenfunctions of are the eigenvalues of the Stokes operator A corresponding to the eigenfunctions Let (1-1.3) where is a Hilbert space, and. Clearly, Vo = H, and ,Hf and are dual spaces of H and V respectively, where the injection is dense, continuous. denote the norm and inner product of H, respectively, i.e., (1.1.4) and denote the norm and inner product in V, respectively, i.e., (1.1.5) and (1.1.6) The norm denotes the norm in denotes the dual product in V and Vf. We define the following bilinear form operator: (1.1.7) and the trilinear form operator (1.1.8) dxi and (1.1.9) where A is defined as, for all. Clearly, the trilinear operator satisfies (1.1.10) (1.1.11) (1.1.12) (1.1.13) (1.1.14) Here, if the Hq norm and Hq norm replace V norm and W norm, respectively, the above inequalities also hold. There exists a positive constant C depending only on Q such that. Theorem 1.1.1 (Young,s Inequality). The following inequalities hold pecially, Theorem 1.1.2 (The Cauchy-Schwarz Inequality). There holds that, for all x G Rn. (1.1.15) (1.1.16) (1.1.17) (1.1.18) Theorem 1.1.3 (Holder Inequality). Let QC]Rn be a domain,assume that and. (1.1.19) Theorem 1.1.4 (Minkowski5s Inequality). Assume cxd. Then for any, (1.1.20) Attractors for Nonlinear Autonomous Dynamical Systems Theorem 1.1.5 (Jensen,s Inequality with Integration). Let g(x) be a function defined on (a, b) and a 0 and m> 0. Let now be given. Suppose that the map is continuously differentiable and fulfills the differential inequality for some e > 0 and k > 0. Theorem 1.1.10 (Gronwall,s Inequality), Let be an absolutely continuous function satisfying at where e > 0,,for all t>s>0 and some m > 0. Under assumptions of theorem 1.1.6, the following inequalities hold for dimension n = 3. Theorem 1.1.11 (Ladyzhenskaya、Inequality). (1.1.25) (1.1.26) Theorem 1.1.12 (Sobolev’s Inequality). Assume that Q Ca bounded smooth domain,then for dimension n = 3, there holds (1.1.27) Theorem 1.1.13 (The Gagliardo-Nirenberg Inequality). (1.1.28) (1.1.29) The

商品評(píng)論(0條)
暫無(wú)評(píng)論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: AGV无人叉车_激光叉车AGV_仓储AGV小车_AGV无人搬运车-南昌IKV机器人有限公司[官网] | 上海logo设计| 空气弹簧|橡胶气囊|橡胶空气弹簧-上海松夏减震器有限公司 | 爱德华真空泵油/罗茨泵维修,爱发科-比其尔产品供应东莞/杭州/上海等全国各地 | 自动化改造_智虎机器人_灌装机_贴标机-上海圣起包装机械 | 踏板力计,制动仪,非接触多功能速度仪,逆反射系数测试仪-创宇 | 天津力值检测-天津管道检测-天津天诚工程检测技术有限公司 | 呼末二氧化碳|ETCO2模块采样管_气体干燥管_气体过滤器-湖南纳雄医疗器械有限公司 | 光栅尺_Magnescale探规_磁栅尺_笔式位移传感器_苏州德美达 | 智能监控-安防监控-监控系统安装-弱电工程公司_成都万全电子 | 编织人生 - 权威手工编织网站,编织爱好者学习毛衣编织的门户网站,织毛衣就上编织人生网-编织人生 | 股指期货-期货开户-交易手续费佣金加1分-保证金低-期货公司排名靠前-万利信息开户 | 贴片电感_贴片功率电感_贴片绕线电感_深圳市百斯特电子有限公司 贴片电容代理-三星电容-村田电容-风华电容-国巨电容-深圳市昂洋科技有限公司 | 汝成内控-行政事业单位内部控制管理服务商| 纳米涂料品牌 防雾抗污纳米陶瓷涂料厂家_虹瓷科技 | 办公室家具公司_办公家具品牌厂家_森拉堡办公家具【官网】 | 解放卡车|出口|济南重汽|报价大全|山东三维商贸有限公司 | 好看的韩国漫画_韩漫在线免费阅读-汗汗漫画 | 自进式锚杆-自钻式中空注浆锚杆-洛阳恒诺锚固锚杆生产厂家 | 周口风机|周风风机|河南省周口通用风机厂 | 大立教育官网-一级建造师培训-二级建造师培训-造价工程师-安全工程师-监理工程师考试培训 | 东莞办公家具厂家直销-美鑫【免费3D效果图】全国办公桌/会议桌定制 | 即用型透析袋,透析袋夹子,药敏纸片,L型涂布棒-上海桥星贸易有限公司 | 济南玻璃安装_济南玻璃门_济南感应门_济南玻璃隔断_济南玻璃门维修_济南镜片安装_济南肯德基门_济南高隔间-济南凯轩鹏宇玻璃有限公司 | AR开发公司_AR增强现实_AR工业_AR巡检|上海集英科技 | 西门子伺服电机维修,西门子电源模块维修,西门子驱动模块维修-上海渠利 | BOE画框屏-触摸一体机-触控查询一体机-触摸屏一体机价格-厂家直销-触发电子 | 土壤有机碳消解器-石油|表层油类分析采水器-青岛溯源环保设备有限公司 | LCD3D打印机|教育|桌面|光固化|FDM3D打印机|3D打印设备-广州造维科技有限公司 | 正压送风机-多叶送风口-板式排烟口-德州志诺通风设备 | 除尘器布袋骨架,除尘器滤袋,除尘器骨架,电磁脉冲阀膜片,卸灰阀,螺旋输送机-泊头市天润环保机械设备有限公司 | 密集架-密集柜厂家-智能档案密集架-自动选层柜订做-河北风顺金属制品有限公司 | 钢骨架轻型板_膨石轻型板_钢骨架轻型板价格_恒道新材料 | 探伤仪,漆膜厚度测试仪,轮胎花纹深度尺厂家-淄博创宇电子 | 臭氧实验装置_实验室臭氧发生器-北京同林臭氧装置网 | 健康管理师报名入口,2025年健康管理师考试时间信息网-网站首页 塑料造粒机「厂家直销」-莱州鑫瑞迪机械有限公司 | _网名词典_网名大全_qq网名_情侣网名_个性网名 | 气体检测仪-氢气检测仪-可燃气体传感器-恶臭电子鼻-深国安电子 | 考勤系统_考勤管理系统_网络考勤软件_政企|集团|工厂复杂考勤工时统计排班管理系统_天时考勤 | 公交驾校-北京公交驾校欢迎您!| 双齿辊破碎机-大型狼牙破碎机视频-对辊破碎机价格/型号图片-金联机械设备生产厂家 |