中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
幾何分析綜述(2021)(英文版)

包郵 幾何分析綜述(2021)(英文版)

出版社:科學出版社出版時間:2022-01-01
開本: 16開 頁數: 264
本類榜單:自然科學銷量榜
中 圖 價:¥103.5(7.5折) 定價  ¥138.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

幾何分析綜述(2021)(英文版) 版權信息

  • ISBN:9787030723277
  • 條形碼:9787030723277 ; 978-7-03-072327-7
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

幾何分析綜述(2021)(英文版) 內容簡介

本書內容是幾何分析領域很好的科研工作者所寫的綜述性報告,文章匯報了幾何分析領域的前沿熱點。包括包括:偏微分方程和黎曼幾何、不變體系、幾何可變體系、瞬變體系和剛片、自由度與辛幾何、代數幾何和物理中的超弦理論、二維非線性偏微分方程、Ricci流、Gromov-Witten不變量理論、Kaehler-Ricci流,Kaehler-Ricci孤立子專享性,調和映射緊性,高余維平均曲率流等。 本書適合高年級本科生,研究生和相關領域的科研工作者閱讀參考。

幾何分析綜述(2021)(英文版) 目錄

Contents
Prologue
Recent Progress on the Formation of Trapped Surfaces and Black Holes Junbin Li 1
Notes on Weighted K.hler-Ricci Solitons Chi Li 18
A Monge-Ampère Type Functional and Related Prescribing Curvature Problems Qi-Rui Li 62
The Obata Type Integral Identity and Its Application Daowen Lin; Xi-Nan Ma; Qianzhong Ou 81
A Brief Survey on a Recent Generalization of Cohn-Vossen Inequality on Certain K.hler Manifolds Gang Liu 111
A Brief Summary of the Recent Global Regularity for Monge-Ampère Equations Jiakun Liu 121
Isoparametric Submanifolds and Mean Curvature Flow Xiaobo Liu 145
Isolated Singularities of the Yamabe Equation with Non-flat Metrics Jingang Xiong 181
The Optimal Exponent of Certain Moser-Trudinger Type Inequalities on Projective Manifolds Kewei Zhang 189
Lower Bound of Modified K-energy on a Fano Manifold with Degeneration for K.hler-Ricci Solitons Liang Zhang 210
Some Regularity Estimates of the Complex Monge-Ampère Equation Xi Zhang 220
Topology of Surfaces with Finite Willmore Energy Jie Zhou 235
Finite Generation and the K.hler-Ricci Soliton Degeneration Ziquan Zhuang 245
展開全部

幾何分析綜述(2021)(英文版) 節選

Recent Progress on the Formation of Trapped Surfaces and Black Holes Junbin Li Department of Mathematics, Sun Yat-sen University, Guangzhou, China Abstract In this paper we review the recent progress on the mathematical results on the formation of trapped surfaces and black holes in general relativity. 1 Preliminaries General relativity is a theory about gravity using the language of Riemannian geometry. A spacetime is a Lorentzian manifold satisfying the Einstein equations When the energy-momentum tensor Tαβ is set to be zero, we call it the vacuum Einstein equations. In vacuum, the Einstein equations read Ricαβ = 0. The Minkowski space defined on R3+1 which is a flat and geodesically complete solution of the vacuum Einstein equations. One of the most important exact solutions of the vacuum Einstein equations is the family of Schwarzschild solutions (1.1) where the parameter M > 0 representing the mass. The Schwarzschild solutions are spherically symmetric and static, and is the only family of vacuum solutions which are spherically symmetric by Birkhoff Theorem. This family of solutions describes the surrounding spacetime of a spherical star. It can be seen from the metric that r = 0 and r = 2M are both singularities of the Schwarzschild solutions. By direct computation, we have , so curvature blows up at r = 0 and hence the metric fails to be C2 when approaching r = 0. However, the curvature remains bounded at r = 2M. In fact, the Schwarzschild metric is smooth across r = 2M, which is a null hypersurface. A surprising feature of Schwarzschild solutions is that there is a region, denoted by B, corresponding to r . 2M, has the property that any future directed timelike or null curves with starting point in B cannot escape to the outside region r > 2M, and in particular cannot escape to the future null infinity I+, the future ideal boundary of the spacetime. Physically, the future null infinity represents the location of faraway observers, so the black hole region is a region invisible to faraway observers. The Schwarzschild solutions are the first and most important family of black hole solutions. It is a subfamily of a larger two-parameter family of black hole solutions , where represents the mass and a represents the angular momentum per unit mass. When a = 0, it reduces to the Schwarzschild solutions. Similar to the Schwarzschild solutions, the region is the region outside the black hole. Kerr solutions represent stationary rotating black holes. For general asymptotically flat spacetime M, Penrose first introduced the notion of the future null infinity I+ by conformal compacification. The future null infinity can be understood as the ideal future boundary of the spacetime, where the spacetime becomes flat. The black hole region B, can then be defined to be the region in M so that any timelike or null curves starting in B cannot end at I+. The (future) event horizon H+, is defined to be the topological boundary of B in M. The family of Kerr black holes is stationary black hole, which means that the black hole is already and always here. A central problem in general relativity is the problem of gravitational collapse: Can and how a black hole form in the evolution of the Einstein equations? 1.1 The initial value problem The evolution of the Einstein equations is formulated in terms of initial value problem. Let be a Cauchy initial data set in vacuum, is a 3-dimensional Riemannian manifold, is a two-tensor, satisfying the constraint equations . (1.2) These equations are essentially the Gauss-Codazzi equations of Σ embedding in M. Then the local well-posedness holds. Theorem 1.1(Choquet-Bruhat [9] and Geroch-Choquet-Bruhat [10]) Given a Cauchy initial data set of the vacuum Einstein equations, there exists a unique maximal future development (M, g), such that is a Cauchy hypersurface, and is the past boundary of (M, g), with , being its first and second fundamental forms. Sometimes we consider characteristic problem instead of Cauchy problem with spacelike initial data, that is, (part of) the initial data is given on null hypersurface. This is because the constraint equations (1.2) are nonlinear system of elliptic equations and are difficult to solve. In the case of two null hypersurfaces intersecting transversally at a spacelike 2-surface, we have Theorem 1.2 (Rendall [31], Luk [27]) Suppose that the characteristic initial data of the vacuum Einstein equations is prescribed on two null hypersurfaces C and C, intersecting transversally at a spacelike 2-surface S. Then there exists a maximal future development (M, g) such that (part of) C ∪ C is the pastboundary of (M, g).1 One of the advantage of considering characteristic problem is the “Gauss- Codazzi equations” induced on C and C are simply ODEs along null generators of the null hypersurfaces. By simply integrating the ODEs, the full initial

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 网站seo优化_seo云优化_搜索引擎seo_启新网络服务中心 | 小型数控车床-数控车床厂家-双头数控车床 | 小港信息港-鹤壁信息港 鹤壁老百姓便民生活信息网站 | 上海律师事务所_上海刑事律师免费咨询平台-煊宏律师事务所 | 工业铝型材生产厂家_铝合金型材配件批发精加工定制厂商 - 上海岐易铝业 | 无水硫酸铝,硫酸铝厂家-淄博双赢新材料科技有限公司 | 深圳货架厂_仓库货架公司_重型仓储货架_线棒货架批发-深圳市诺普泰仓储设备有限公司 | 搪瓷搅拌器,搪玻璃搅拌器,搪玻璃冷凝器_厂家-淄博越宏化工设备 | 好物生环保网、环保论坛 - 环保人的学习交流平台 | 钢格板|镀锌钢格板|热镀锌钢格板|格栅板|钢格板|钢格栅板|热浸锌钢格板|平台钢格板|镀锌钢格栅板|热镀锌钢格栅板|平台钢格栅板|不锈钢钢格栅板 - 专业钢格板厂家 | 污水/卧式/潜水/钻井/矿用/大型/小型/泥浆泵,价格,参数,型号,厂家 - 安平县鼎千泵业制造厂 | 大立教育官网-一级建造师培训-二级建造师培训-造价工程师-安全工程师-监理工程师考试培训 | 深圳富泰鑫五金_五金冲压件加工_五金配件加工_精密零件加工厂 | 电动葫芦|防爆钢丝绳电动葫芦|手拉葫芦-保定大力起重葫芦有限公司 | 武汉森源蓝天环境科技工程有限公司-为环境污染治理提供协同解决方案 | 山东活动策划|济南活动公司|济南公关活动策划-济南锐嘉广告有限公司 | 自清洗过滤器-全自动自清洗过反冲洗过滤器 - 中乂(北京)科技有限公司 | 活性炭-蜂窝-椰壳-柱状-粉状活性炭-河南唐达净水材料有限公司 | 凝胶成像仪,化学发光凝胶成像系统,凝胶成像分析系统-上海培清科技有限公司 | 新中天检测有限公司青岛分公司-山东|菏泽|济南|潍坊|泰安防雷检测验收 | 丝杆升降机-不锈钢丝杆升降机-非标定制丝杆升降机厂家-山东鑫光减速机有限公司 | 首页-恒温恒湿试验箱_恒温恒湿箱_高低温试验箱_高低温交变湿热试验箱_苏州正合 | SOUNDWELL 编码器|电位器|旋转编码器|可调电位器|编码开关厂家-广东升威电子制品有限公司 | 磁力抛光机_磁力研磨机_磁力去毛刺机_精密五金零件抛光设备厂家-冠古科技 | 自动检重秤-动态称重机-重量分选秤-苏州金钻称重设备系统开发有限公司 | 武汉印刷厂-不干胶标签印刷厂-武汉不干胶印刷-武汉标签印刷厂-武汉标签制作 - 善进特种标签印刷厂 | 空气能暖气片,暖气片厂家,山东暖气片,临沂暖气片-临沂永超暖通设备有限公司 | 列管冷凝器,刮板蒸发器,外盘管反应釜厂家-无锡曼旺化工设备有限公司 | 骨密度仪-骨密度测定仪-超声骨密度仪-骨龄测定仪-天津开发区圣鸿医疗器械有限公司 | 自清洗过滤器,浅层砂过滤器,叠片过滤器厂家-新乡市宇清净化 | 短信营销平台_短信群发平台_106短信发送平台-河南路尚 | 抖音短视频运营_企业网站建设_网络推广_全网自媒体营销-东莞市凌天信息科技有限公司 | 玉米深加工设备-玉米深加工机械-新型玉米工机械生产厂家-河南粮院机械制造有限公司 | 硫化罐-电加热蒸汽硫化罐生产厂家-山东鑫泰鑫智能装备有限公司 | 牛奶检测仪-乳成分分析仪-北京海谊 | 华东师范大学在职研究生招生网_在职研究生招生联展网 | 数码管_LED贴片灯_LED数码管厂家-无锡市冠卓电子科技有限公司 | 烘干设备-热泵烘干机_广东雄贵能源设备有限公司 | 广州工业氧气-工业氩气-工业氮气-二氧化碳-广州市番禺区得力气体经营部 | 高效节能电机_伺服主轴电机_铜转子电机_交流感应伺服电机_图片_型号_江苏智马科技有限公司 | 恒湿机_除湿加湿一体机_恒湿净化消毒一体机厂家-杭州英腾电器有限公司 |