中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請 | 注冊
> >
常微分方程--解析方法與數(shù)值方法

包郵 常微分方程--解析方法與數(shù)值方法

作者:許秋燕
出版社:電子工業(yè)出版社出版時間:2022-06-01
開本: 16開 頁數(shù): 225
本類榜單:自然科學銷量榜
中 圖 價:¥55.5(8.0折) 定價  ¥69.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

常微分方程--解析方法與數(shù)值方法 版權(quán)信息

  • ISBN:9787121435430
  • 條形碼:9787121435430 ; 978-7-121-43543-0
  • 裝幀:一般膠版紙
  • 冊數(shù):暫無
  • 重量:暫無
  • 所屬分類:>

常微分方程--解析方法與數(shù)值方法 內(nèi)容簡介

本書主要介紹常微分方程的一些常用解析方法和數(shù)值方法,對于一階常微分方程,介紹了4種常用的解析方法,即變量分離法、常數(shù)變易法、積分因子法、參數(shù)表示法;對于高階常微分方程,重點討論了特征根法、比較系數(shù)法、拉普拉斯變換法、降階法和冪級數(shù)法;對于線性常微分方程組,介紹了其一般理論及基解矩陣的計算等。此外,本書還介紹了常微分方程初值問題和邊值問題的數(shù)值求解方法,這些數(shù)值方法不僅包括經(jīng)典的歐拉方法、Runge-Kutta方法、有限差分方法、有限元方法等,還涉及近年來數(shù)值計算中流行的配點方法。解析方法與數(shù)值方法并駕齊驅(qū),相互促進,是求解常微分方程的兩種重要手段。本書以各類方法為切入點,通過引入大量的經(jīng)典常微分方程模型,深入淺出地闡述了各種模型問題的求解。本書可供數(shù)學專業(yè)高年級本科生或研究生閱讀,也可作為從事數(shù)學建模、數(shù)學實驗、科學工程計算等方面工作的理工類專業(yè)人員的參考書。

常微分方程--解析方法與數(shù)值方法 目錄

第1 章常微分方程模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
1.1 經(jīng)典常微分方程模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 常微分方程基本概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 基本概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.2 幾何意義. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 常微分方程發(fā)展歷史. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
習題1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
第2 章一階常微分方程的解析方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 變量分離法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.1 變量分離方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.1.2 可化為變量分離方程的類型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2 常數(shù)變易法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 積分因子法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.1 恰當微分方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.3.2 積分因子法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
2.4 參數(shù)表示法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.4.1 可以解出y(或x) 的方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.2 不顯含y 或x 的方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5 應用舉例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
習題2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
第3 章一階常微分方程的解的存在理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51
3.1 解的存在唯一性定理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.2 解的延拓定理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
3.3 解對初值的連續(xù)性定理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.4 解對初值的可微性定理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.5 包絡和奇解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
習題3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
第4 章高階常微分方程的解析方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1 高階線性微分方程的一般理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.1 線性微分方程模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.1.2 齊次線性微分方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.1.3 非齊次線性微分方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 特征根法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.1 復值函數(shù)與復指數(shù)函數(shù). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.2.2 常系數(shù)齊次線性微分方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2.3 歐拉方程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.3 比較系數(shù)法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
4.4 拉普拉斯變換法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
4.5 降階法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
4.6 冪級數(shù)法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
4.7 應用問題舉例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
習題4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
第5 章線性常微分方程組的解析方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
5.1 線性微分方程組的一般理論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.1.1 基本概念. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
5.1.2 存在唯一性定理. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
5.1.3 齊次線性微分方程組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
5.1.4 非齊次線性微分方程組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
5.2 常系數(shù)線性微分方程組. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
5.2.1 矩陣指數(shù)expA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
5.2.2 基解矩陣的計算. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .168
5.3 應用問題舉例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
習題5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
第6 章常微分方程初值問題的數(shù)值解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
6.1 歐拉方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
6.1.1 歐拉方法及其改進. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192
6.1.2 歐拉方法分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
6.2 Runge-Kutta 方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
6.3 線性多步方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.4 應用舉例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
習題6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
第7 章常微分方程邊值問題的數(shù)值解. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .208
7.1 有限差分方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
7.2 有限元方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
7.3 配點方法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
7.4 打靶法. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .218
7.5 應用舉例. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
習題7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
展開全部

常微分方程--解析方法與數(shù)值方法 作者簡介

許秋燕,寧夏大學數(shù)學統(tǒng)計學院副教授,碩士生導師,入選“寧夏青年人才托舉工程”。2010年畢業(yè)于山東大學計算數(shù)學專業(yè),獲博士學位。主要研究偏微分方程的數(shù)值方法,包括非線性迭代方法、徑向基函數(shù)多尺度配點算法、強非線性Monge-Ampere 程的數(shù)值求解。在國內(nèi)外重要學術(shù)期刊上發(fā)表 SCI 檢索論文數(shù)篇。主持完成國家自然科學項目1項,主持完成***自然科學基金項目3項。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: 淄博不锈钢,淄博不锈钢管,淄博不锈钢板-山东振远合金科技有限公司 | 锂电叉车,电动叉车_厂家-山东博峻智能科技有限公司 | 佛山市德信昌电子有限公司| Eiafans.com_环评爱好者 环评网|环评论坛|环评报告公示网|竣工环保验收公示网|环保验收报告公示网|环保自主验收公示|环评公示网|环保公示网|注册环评工程师|环境影响评价|环评师|规划环评|环评报告|环评考试网|环评论坛 - Powered by Discuz! | 电子书导航网_电子书之家_电子书大全_最新电子书分享发布平台 | 济南展厅设计施工_数字化展厅策划设计施工公司_山东锐尚文化传播有限公司 | 无硅导热垫片-碳纤维导热垫片-导热相变材料厂家-东莞市盛元新材料科技有限公司 | 无锡不干胶标签,卷筒标签,无锡瑞彩包装材料有限公司 | 电动葫芦-河北悍象起重机械有限公司| 无缝钢管-聊城无缝钢管-小口径无缝钢管-大口径无缝钢管 - 聊城宽达钢管有限公司 | 美甲贴片-指甲贴片-穿戴美甲-假指甲厂家--薇丝黛拉 | 涿州网站建设_网站设计_网站制作_做网站_固安良言多米网络公司 | 陕西鹏展科技有限公司| 北京律师事务所_房屋拆迁律师_24小时免费法律咨询_云合专业律师网 | 蓝莓施肥机,智能施肥机,自动施肥机,水肥一体化项目,水肥一体机厂家,小型施肥机,圣大节水,滴灌施工方案,山东圣大节水科技有限公司官网17864474793 | 爱德华真空泵油/罗茨泵维修,爱发科-比其尔产品供应东莞/杭州/上海等全国各地 | 昆明网络公司|云南网络公司|昆明网站建设公司|昆明网页设计|云南网站制作|新媒体运营公司|APP开发|小程序研发|尽在昆明奥远科技有限公司 | 南京泽朗生物科技有限公司 | 超声波清洗机_大型超声波清洗机_工业超声波清洗设备-洁盟清洗设备 | 日本细胞免疫疗法_肿瘤免疫治疗_NK细胞疗法 - 免疫密码 | 口信网(kousing.com) - 行业资讯_行业展会_行业培训_行业资料 | 全屋整木定制-橱柜,家具定制-四川峨眉山龙马木业有限公司 | 河南道路标志牌_交通路标牌_交通标志牌厂家-郑州路畅交通 | 长江船运_国内海运_内贸船运_大件海运|运输_船舶运输价格_钢材船运_内河运输_风电甲板船_游艇运输_航运货代电话_上海交航船运 | 超声波反应釜【百科】-以马内利仪器| 防水套管厂家_刚性防水套管_柔性防水套管_不锈钢防水套管-郑州中泰管道 | 播音主持培训-中影人教育播音主持学苑「官网」-中国艺考界的贵族学校 | 台式低速离心机-脱泡离心机-菌种摇床-常州市万丰仪器制造有限公司 | 土壤墒情监测站_土壤墒情监测仪_土壤墒情监测系统_管式土壤墒情站-山东风途物联网 | 防爆电机_防爆电机型号_河南省南洋防爆电机有限公司 | 阿尔法-MDR2000无转子硫化仪-STM566 SATRA拉力试验机-青岛阿尔法仪器有限公司 | 振动筛-交叉筛-螺旋筛-滚轴筛-正弦筛-方形摇摆筛「新乡振动筛厂家」 | 隧道风机_DWEX边墙风机_SDS射流风机-绍兴市上虞科瑞风机有限公司 | 万家财经_财经新闻_在线财经资讯网 | 电销卡_稳定企业大语音卡-归属地可选-世纪通信 | 电镀整流器_微弧氧化电源_高频电解电源_微弧氧化设备厂家_深圳开瑞节能 | 深圳市万色印象美业有限公司 | 国际线缆连接网 - 连接器_线缆线束加工行业门户网站 | 浙江皓格药业有限公司| 科研ELISA试剂盒,酶联免疫检测试剂盒,昆虫_植物ELISA酶免试剂盒-上海仁捷生物科技有限公司 | 玉米加工设备,玉米深加工机械,玉米糁加工设备.玉米脱皮制糁机 华豫万通粮机 |