中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
AP微積分 AB & BC 版權信息
- ISBN:9787569034257
- 條形碼:9787569034257 ; 978-7-5690-3425-7
- 裝幀:一般輕型紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
AP微積分 AB & BC 內容簡介
本書是首批“重慶市普通高中數學課程創新基地”研發成果,以及2019年重慶市普通高中精品選修課《AP微積分》的使用教材。編者根據中國學生的學習特點,綜合參考了國內外多個版本的微積分經典教材,通過對AP微積分考試真題的多年研究編寫而成適合具有初中數學基礎的學生使用的自學教材。本教材的優選特點是內容上做好了對高一開始國內數學知識和國外《AP微積分》的基礎知識的銜接,并對考試用圖形計算器的操作進行了詳盡的指導。
AP微積分 AB & BC 目錄
Chapter 1 Prerequisites for Calculus(微積分預備知識)
1.1 Sets and Intervals(集合與區問)
1.2 Definitions of Functions(函數的定義)
1.3 Properties of Functions(函數的性質)
1.4 Function Operations(函數的運算)
1.5 Basic Elementary Functions(基本初等函數)
1.6 Parametric Equations(參數方程)
1.7 Polar Functions(極坐標方程)
1.8 Transformations of Functions(函數圖像的變換)
Practice Exercises(習題)
習題參考答案
Chapter 2 Limits and Continuity(極限和連續)
2.1 Definitions of Limits(極限的定義)
2.2 The Precise Definition of a Limit(極限的嚴格定義)
2.3 Theorems on Limits(極限的定理)
2.4 Computing Limits(極限的計算)
2.5 Asymptotes(漸近線)
2.6 Continuity(連續性)
2.7 連續函數定理
Practice Exercises(習題)
習題參考答案
Chapter 3 Definition of Derivative(導數的定義)
3.1 Definition of Derivative(導數的定義)
3.2 高階導數
3.3 The Relationship between Differentiability and Continuity(可導與連續的關系)
3.4 不可導點的類型
Practice Exercises(習題)
習題參考答案
Chapter 4 Computation of Derivative(導數的計算)
4.1 Arithmetic Operations on Derivative(導數的代數運算)
4.2 Derivative of Inverse Function(反函數的導數)
4.3 Essential Fornmlas(基本公式)
4.4 Chain Rule(鏈式法則)
4.5 Implicit Function Derivative(隱函數的導數)
4.6 Logarithmic I)ifferentiation(對數求導法)
4.7 Parametric Function Derivative(參數方程的導數)
4.8 Polar Function Derivative(極坐標方程的導數)
Practice Exercises(習題)
習題參考答案
Chapter 5 Applications of Derivative(導數的應用)
5.1 Average and Instantaneous Rates of Change(平均變化率與瞬時變化率)
5.2 Tangents and Normals(切線和法線)
5.3 The Mean Value Theorem for Derivatives(微分中值定理)
5.4 Related Rates(相關變化率)
5.5 L'H6pital's Rule(洛必達法則)
5.6 Monotony of Functions(函數的單調性)
5.7 Concavity and the Point of Inflection(凹凸性與拐點)
5.8 Curve Sketching(函數圖形的描繪)
5.9 Absolute Minimum Value and Absolute Maximum Value(*大值與*小值)
5.10 Motion Problems(運動問題)
Practice Exercises(習題)
習題參考答案
Chapter 6 Differential and Approximation(微分與近似計算)
6.1 Differentials(微分)
6.2 Approximating a Derivative Value(導數的近似計算)
6.3 Local Linear Approximation(局部線性近似)
6.4 Newton's Method(牛頓法)
Practice Exercises(習題)
習題參考答案
Chapter 7 Antidifferentiation(不定積分)
7.1 Definition of Antidifferentiation(不定積分的定義)
7.2 Integral by Substitution(換元積分法)
7.3 Integral by Parts(分部積分法)
7.4 Indefinite Integral of Rational Functions(有理函數的不定積分)
Practice Exercises(習題)
習題參考答案
Chapter 8 Definite Integrals(定積分)
8.1 Riemann Sums and Definite Integrals(黎曼和與定積分)
8.2 Approximation of Definite Integral(定積分的近似計算)
8.3 Properties of Definite Integrals(定積分的性質)
8.4 Fundamental Theorem of Calculus(微積分基本定理)
8.5 Operations on Definite Integrals(定積分的計算)
8.6 Improper Integral(反常積分)
Practice Exercises(習題)
習題參考答案
Chapter 9 Applications of the Integral to Geometry(定積分的幾何應用)
9.1 The Element Method of Definite Integrals(定積分的元素法)
9.2 Area between Two Curves(由兩條曲線所圍成的圖形的面積)
9.3 Volumes by Slicing(切片法求體積)
9.4 Length of a Plan Curve(平面曲線的弧長)
Practice Exercises(習題)
習題參考答案
Chapter 10 Differential Equations(微分方程)
10.1 Definitions of Differential Equations(微分方程的相關概念)
10.2 Separable Differential Equations(可分離變量的微分方程)
10.3 Numerical and Graphical Methods(微分方程的數值和圖像解法)
10.4 Applications of First—Order Differential Equations(一階微分方程的應用)
Practice Exercises(習題)
習題參考答案
Chapter 11 Sequences and Series(序列和級數)
11.
1.1 Sets and Intervals(集合與區問)
1.2 Definitions of Functions(函數的定義)
1.3 Properties of Functions(函數的性質)
1.4 Function Operations(函數的運算)
1.5 Basic Elementary Functions(基本初等函數)
1.6 Parametric Equations(參數方程)
1.7 Polar Functions(極坐標方程)
1.8 Transformations of Functions(函數圖像的變換)
Practice Exercises(習題)
習題參考答案
Chapter 2 Limits and Continuity(極限和連續)
2.1 Definitions of Limits(極限的定義)
2.2 The Precise Definition of a Limit(極限的嚴格定義)
2.3 Theorems on Limits(極限的定理)
2.4 Computing Limits(極限的計算)
2.5 Asymptotes(漸近線)
2.6 Continuity(連續性)
2.7 連續函數定理
Practice Exercises(習題)
習題參考答案
Chapter 3 Definition of Derivative(導數的定義)
3.1 Definition of Derivative(導數的定義)
3.2 高階導數
3.3 The Relationship between Differentiability and Continuity(可導與連續的關系)
3.4 不可導點的類型
Practice Exercises(習題)
習題參考答案
Chapter 4 Computation of Derivative(導數的計算)
4.1 Arithmetic Operations on Derivative(導數的代數運算)
4.2 Derivative of Inverse Function(反函數的導數)
4.3 Essential Fornmlas(基本公式)
4.4 Chain Rule(鏈式法則)
4.5 Implicit Function Derivative(隱函數的導數)
4.6 Logarithmic I)ifferentiation(對數求導法)
4.7 Parametric Function Derivative(參數方程的導數)
4.8 Polar Function Derivative(極坐標方程的導數)
Practice Exercises(習題)
習題參考答案
Chapter 5 Applications of Derivative(導數的應用)
5.1 Average and Instantaneous Rates of Change(平均變化率與瞬時變化率)
5.2 Tangents and Normals(切線和法線)
5.3 The Mean Value Theorem for Derivatives(微分中值定理)
5.4 Related Rates(相關變化率)
5.5 L'H6pital's Rule(洛必達法則)
5.6 Monotony of Functions(函數的單調性)
5.7 Concavity and the Point of Inflection(凹凸性與拐點)
5.8 Curve Sketching(函數圖形的描繪)
5.9 Absolute Minimum Value and Absolute Maximum Value(*大值與*小值)
5.10 Motion Problems(運動問題)
Practice Exercises(習題)
習題參考答案
Chapter 6 Differential and Approximation(微分與近似計算)
6.1 Differentials(微分)
6.2 Approximating a Derivative Value(導數的近似計算)
6.3 Local Linear Approximation(局部線性近似)
6.4 Newton's Method(牛頓法)
Practice Exercises(習題)
習題參考答案
Chapter 7 Antidifferentiation(不定積分)
7.1 Definition of Antidifferentiation(不定積分的定義)
7.2 Integral by Substitution(換元積分法)
7.3 Integral by Parts(分部積分法)
7.4 Indefinite Integral of Rational Functions(有理函數的不定積分)
Practice Exercises(習題)
習題參考答案
Chapter 8 Definite Integrals(定積分)
8.1 Riemann Sums and Definite Integrals(黎曼和與定積分)
8.2 Approximation of Definite Integral(定積分的近似計算)
8.3 Properties of Definite Integrals(定積分的性質)
8.4 Fundamental Theorem of Calculus(微積分基本定理)
8.5 Operations on Definite Integrals(定積分的計算)
8.6 Improper Integral(反常積分)
Practice Exercises(習題)
習題參考答案
Chapter 9 Applications of the Integral to Geometry(定積分的幾何應用)
9.1 The Element Method of Definite Integrals(定積分的元素法)
9.2 Area between Two Curves(由兩條曲線所圍成的圖形的面積)
9.3 Volumes by Slicing(切片法求體積)
9.4 Length of a Plan Curve(平面曲線的弧長)
Practice Exercises(習題)
習題參考答案
Chapter 10 Differential Equations(微分方程)
10.1 Definitions of Differential Equations(微分方程的相關概念)
10.2 Separable Differential Equations(可分離變量的微分方程)
10.3 Numerical and Graphical Methods(微分方程的數值和圖像解法)
10.4 Applications of First—Order Differential Equations(一階微分方程的應用)
Practice Exercises(習題)
習題參考答案
Chapter 11 Sequences and Series(序列和級數)
11.
展開全部
AP微積分 AB & BC 作者簡介
簡學琴,曾擔任過七年的大學老師,長期教授微積分、統計學等大學數學課程。現在四川外國語大學附屬外國語學校 部擔任數學教師,對美國AP課程的教學和考試深有研究。擔任多項 課題主研,中數會“十三五”課題“圖形計算器與高中數學教學整合研究”全國專家組成員,《美國高中數學考試一本通》等課題成果已內部印發3000余冊,用于 學校間的學術交流。
書友推薦
- >
山海經
- >
姑媽的寶刀
- >
推拿
- >
經典常談
- >
自卑與超越
- >
苦雨齋序跋文-周作人自編集
- >
伯納黛特,你要去哪(2021新版)
- >
小考拉的故事-套裝共3冊
本類暢銷