中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
微積分原理(上)

包郵 微積分原理(上)

作者:崔建蓮
出版社:電子工業出版社出版時間:2023-07-01
開本: 其他 頁數: 320
本類榜單:自然科學銷量榜
中 圖 價:¥50.0(7.2折) 定價  ¥69.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

微積分原理(上) 版權信息

  • ISBN:9787121458392
  • 條形碼:9787121458392 ; 978-7-121-45839-2
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

微積分原理(上) 內容簡介

微積分是理工科高等學校非數學類專業*基礎、重要的一門核心課程。許多后繼數學課程及物理和各種工程學課程都是在微積分課程的基礎上展開的,因此學好這門課程對每一位理工科學生來說都非常重要。本書在傳授微積分知識的同時,注重培養學生的數學思維、語言邏輯和創新能力,弘揚數學文化,培養科學精神。本套教材分上、下兩冊。上冊內容包括實數集與初等函數、數列極限、函數極限與連續、導數與微分、微分學基本定理及應用、不定積分、定積分、廣義積分和常微分方程。下冊內容包括多元函數的極限與連續、多元函數微分學及其應用、重積分、曲線積分、曲面積分、數項級數、函數項級數、傅里葉級數和含參積分。

微積分原理(上) 目錄

目錄 第1 章 實數集與初等函數··················1 1.1 實數集····································1 1.1.1 集合及其運算························1 1.1.2 映射···································3 1.1.3 可數集································3 1.1.4 實數集的性質························5 1.1.5 戴德金原理···························8 1.1.6 確界原理·····························8 習題1.1····································.10 1.2 初等函數······························.11 1.2.1 函數的概念························.11 1.2.2 函數的一些特性··················.12 1.2.3 函數的運算························.13 1.2.4 基本初等函數·····················.14 1.2.5 反函數及其存在條件·············.18 1.2.6 反三角函數························.19 *1.2.7 雙曲函數和反雙曲函數··········.22 *1.2.8 雙曲函數與三角函數之間的聯系·····························.24 習題1.2····································.24 第2 章 數列極限····························.27 2.1 數列極限的概念·····················.27 習題2.1····································.30 2.2 數列極限的性質·····················.31 習題2.2····································.35 2.3 幾類特殊的數列·····················.36 2.3.1 無窮大數列與無窮小數列·······.36 2.3.2 無窮大數列與無界數列··········.36 2.3.3 Stolz 定理·························.38 習題2.3 ···································.40 2.4 實數連續性定理····················.41 2.4.1 單調有界定理·····················.41 2.4.2 閉區間套定理·····················.43 2.4.3 Bolzano-Weierstrass 定理·········.44 2.4.4 柯西收斂準則·····················.45 *2.4.5 有限覆蓋定理·····················.47 *2.4.6 聚點定理··························.48 習題2.4 ···································.48 *2.5 上極限與下極限···················.50 習題2.5 ···································.54 第3 章 函數極限與連續··················.55 3.1 函數極限的概念····················.55 3.1.1 函數在一點的極限···············.55 3.1.2 函數在無窮遠處的極限··········.58 習題3.1 ···································.58 3.2 函數極限的性質及運算···········.59 3.2.1 函數極限的性質··················.59 3.2.2 函數極限的四則運算·············.60 3.2.3 復合函數的極限··················.62 習題3.2 ···································.62 3.3 函數極限的存在條件··············.63 3.3.1 函數極限與數列極限的關系·····.63 3.3.2 兩個重要極限·····················.65 3.3.3 無窮大量與無窮小量·············.67 3.3.4 等價無窮小量代換求極限········.69 習題3.3····································.71 3.4 函數的連續···························.73 3.4.1 函數連續的概念··················.73 3.4.2 間斷點及其分類··················.74 3.4.3 連續函數的局部性質·············.78 習題3.4····································.78 3.5 閉區間上連續函數的性質········.79 3.5.1 閉區間上連續函數的基本性質··.79 3.5.2 反函數的連續性··················.82 3.5.3 一致連續性························.83 習題3.5····································.86 第4 章 導數與微分·························.89 4.1 導數的概念···························.89 4.1.1 導數概念的引出··················.89 4.1.2 函數可導的條件與性質··········.91 習題4.1····································.92 4.2 求導法則······························.94 4.2.1 導數的四則運算法則·············.94 4.2.2 反函數求導法則··················.96 4.2.3 復合函數的導數――鏈式法則···.97 4.2.4 隱函數求導法則··················.98 4.2.5 參數方程求導法則················.99 習題4.2····································102 4.3 函數的微分···························103 4.3.1 可微的概念························103 4.3.2 可微與可導的關系················104 4.3.3 微分在函數近似計算中的應用··105 4.3.4 微分的運算法則··················106 習題4.3····································106 4.4 高階導數與高階微分··············106 4.4.1 高階導數·························.107 4.4.2 高階微分·························.109 4.4.3 復合函數的微分·················.109 習題4.4 ··································.110 第5 章 微分學基本定理及應用········.112 5.1 微分中值定理······················.112 5.1.1 極值的概念與費馬定理·········.112 5.1.2 微分中值定理····················.113 習題5.1 ··································.118 5.2 洛必達法則··························.120 5.2.1 0 0 型不定式極限·················.120 5.2.2 ∞ ∞ 型不定式極限················.123 5.2.3 其他類型不定式極限············.125 習題5.2 ··································.126 5.3 泰勒公式及應用···················.127 5.3.1 泰勒公式·························.128 5.3.2 基本初等函數的展開式·········.130 5.3.3 泰勒公式的應用·················.134 習題5.3 ··································.138 5.4 單調性與極值······················.140 5.4.1 函數的單調性····················.140 5.4.2 函數取極值的條件··············.142 習題5.4 ··································.145 5.5 函數的凸性與函數作圖··········.147 5.5.1 函數的凸性······················.147 5.5.2 曲線的漸近性····················.152 5.5.3 函數作圖·························.153 習題5.5 ··································.155 *5.6 方程求根的牛頓迭代公式·····.155 第6 章 不定積分···························.160 6.1 原函數與不定積分················.160 6.1.1 原函數與不定積分的概念······.160 6.1.2 不定積分的線性運算·············162 6.1.3 常用的不定積分公式·············162 習題6.1····································163 6.2 不定積分計算························164 6.2.1 分部積分法························165 6.2.2 積分換元法························166 習題6.2····································174 6.3 有理函數的不定積分··············175 習題6.3····································178 6.4 可化為有理函數的不定積分·····179 6.4.1 三角有理函數的不定積分········179 6.4.2 某些無理函數的不定積分········182 習題6.4····································185 第7 章 定積分·······························187 7.1 定積分的概念及可積條件········187 7.1.1 引例································187 7.1.2 定積分的概念·····················188 7.1.3 定積分的幾何意義················189 7.1.4 可積的必要條件··················190 7.1.5 可積準則··························191 習題7.1····································195 7.2 可積函數類及定積分的性質·····195 7.2.1 閉區間上的可積函數類··········195 *7.2.2 再論可積的充要條件·············196 7.2.3 定積分的性質·····················200 習題7.2····································203 7.3 定積分的計算························204 7.3.1 變上限積分························205 7.3.2 微積分基本定理··················208 7.3.3 積分換元法和分部積分法········210 習題7.3····································213 7.4 積分中值定理························216 習題7.4····································221 7.5 定積分的應用······················.221 *7.5.1 分析學應用······················.221 7.5.2 定積分的幾何應用··············.224 7.5.3 定積分的物理應用··············.232 習題7.5 ··································.236 第8 章 廣義積分···························.239 8.1 無窮積分·····························.239 8.1.1 無窮積分的概念·················.239 8.1.2 無窮積分求值····················.240 8.1.3 無窮積分斂散性判別法·········.241 習題8.1 ··································.246 8.2 瑕積分································.248 8.2.1 瑕積分收斂的概念··············.248 8.2.2 無窮積分與瑕積分的關系······.249 8.2.3 瑕積分斂散性判別法············.250 習題8.2 ··································.254 第9 章 常微分方程························.255 9.1 常微分方程的概念················.255 9.1.1 引例······························.255 9.1.2 常微分方程的概念··············.257 9.1.3 常微分方程的解·················.257 習題9.1 ··································.258 9.2 一階常微分方程的初等解法····.259 9.2.1 可分離變量的微分方程·········.259 9.2.2 齊次方程·························.261 9.2.3 可化為齊次方程類型的方程····.262 9.2.4 常數變易法······················.263 9.2.5 伯努利方程······················.265 習題9.2 ··································.267 9.3 一階微分方程初值問題的解····.268 9.3.1 初值問題解的存在專享性 定理······························.268 *9.3.2 奇解······························.268 9.4 高階線性常微分方程··············269 9.4.1 可降階的高階微分方程··········269 9.4.2 高階線性常微分方程解 的結構·····························273 9.4.3 高階非齊次方程的常數 變易法·····························278 習題9.4····································280 9.5 常系數高階線性常微分方程·····281 9.5.1 常系數齊次線性常微分方程的特征值法··························281 9.5.2 常系數非齊次線性常微分方程的待定系數法·····················285 *9.5.3 常系數線性常微分方程的應用――質點的振動···············289 習題9.5····································291 9.6 歐拉方程······························292 習題9.6····································294 9.7 一階線性常微分方程組··········.294 9.7.1 解的疊加原理及解的存在專享性····························.294 9.7.2 一階線性常微分方程組解的結構······························.295 9.7.3 一階非齊次線性常微分方程組的 常數變易法······················.298 9.7.4 從方程組的觀點看高階微分方程······························.299 9.8 常系數線性常微分方程組·······.301 9.8.1 矩陣A 可對角化的情形·········.301 9.8.2 矩陣A 不可對角化的情形······.302 9.8.3 矩陣A 有復特征根的情形······.305 *9.8.4 方程組初值問題解的一般形式·························.307 *9.8.5 非齊次方程的通解··············.309 習題9.8 ··································.310
展開全部

微積分原理(上) 作者簡介

崔建蓮,清華大學數學系副教授,主要研究方向為算子代數、算子理論及在量子信息中的應用,發表學術論文60多篇,SCI收錄50多篇。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 新能源汽车教学设备厂家报价[汽车教学设备运营18年]-恒信教具 | 三效蒸发器_多效蒸发器价格_四效三效蒸发器厂家-青岛康景辉 | BOE画框屏-触摸一体机-触控查询一体机-触摸屏一体机价格-厂家直销-触发电子 | B2B网站_B2B免费发布信息网站_B2B企业贸易平台 - 企资网 | 岩石钻裂机-液压凿岩机-劈裂机-挖改钻_湖南烈岩科技有限公司 | 飞飞影视_热门电影在线观看_影视大全| 一体化污水处理设备-一体化净水设备-「山东梦之洁水处理」 | 膏方加工_丸剂贴牌_膏滋代加工_湖北康瑞生物科技有限公司 | 超声波清洗机_超声波清洗机设备_超声波清洗机厂家_鼎泰恒胜 | 油冷式_微型_TDY电动滚筒_外装_外置式电动滚筒厂家-淄博秉泓机械有限公司 | 山东信蓝建设有限公司官网| 浙江宝泉阀门有限公司| 旋片真空泵_真空泵_水环真空泵_真空机组-深圳恒才机电设备有限公司 | 天津暖气片厂家_钢制散热器_天津铜铝复合暖气片_维尼罗散热器 | 大鼠骨髓内皮祖细胞-小鼠神经元-无锡欣润生物科技有限公司 | 硅PU球场、篮球场地面施工「水性、环保、弹性」硅PU材料生产厂家-广东中星体育公司 | 焊接烟尘净化器__焊烟除尘设备_打磨工作台_喷漆废气治理设备 -催化燃烧设备 _天津路博蓝天环保科技有限公司 | 太原装修公司_山西整装家装设计_太原室内装潢软装_肖邦家居 | 水轮机密封网 | 水轮机密封产品研发生产厂家 | 纯化水设备-纯水设备-超纯水设备-[大鹏水处理]纯水设备一站式服务商-东莞市大鹏水处理科技有限公司 | 济南办公室装修-厂房装修-商铺装修-工装公司-山东鲁工装饰设计 | 杭州中策电线|中策电缆|中策电线|杭州中策电缆|杭州中策电缆永通集团有限公司 | Eiafans.com_环评爱好者 环评网|环评论坛|环评报告公示网|竣工环保验收公示网|环保验收报告公示网|环保自主验收公示|环评公示网|环保公示网|注册环评工程师|环境影响评价|环评师|规划环评|环评报告|环评考试网|环评论坛 - Powered by Discuz! | 【MBA备考网】-2024年工商管理硕士MBA院校/报考条件/培训/考试科目/提前面试/考试/学费-MBA备考网 | 波纹补偿器_不锈钢波纹补偿器_巩义市润达管道设备制造有限公司 | 并离网逆变器_高频UPS电源定制_户用储能光伏逆变器厂家-深圳市索克新能源 | 事迹材料_个人事迹名人励志故事| 高防护蠕动泵-多通道灌装系统-高防护蠕动泵-www.bjhuiyufluid.com慧宇伟业(北京)流体设备有限公司 | 废气处理设备-工业除尘器-RTO-RCO-蓄热式焚烧炉厂家-江苏天达环保设备有限公司 | 体坛网_体坛+_体坛周报新闻客户端 | 英国公司注册-新加坡公司注册-香港公司开户-离岸公司账户-杭州商标注册-杭州优创企业 | TPE塑胶原料-PPA|杜邦pom工程塑料、PPSU|PCTG材料、PC/PBT价格-悦诚塑胶 | 【铜排折弯机,钢丝折弯成型机,汽车发泡钢丝折弯机,线材折弯机厂家,线材成型机,铁线折弯机】贝朗折弯机厂家_东莞市贝朗自动化设备有限公司 | 礼至家居-全屋定制家具_一站式全屋整装_免费量房设计报价 | 天然气分析仪-液化气二甲醚分析仪|传昊仪器| 天津中都白癜风医院_天津白癜风医院_天津治疗白癜风 | 三效蒸发器_多效蒸发器价格_四效三效蒸发器厂家-青岛康景辉 | 整车VOC采样环境舱-甲醛VOC预处理舱-多舱法VOC检测环境仓-上海科绿特科技仪器有限公司 | 石家庄救护车出租_重症转院_跨省跨境医疗转送_活动赛事医疗保障_康复出院_放弃治疗_腾康26年医疗护送转诊团队 | 上海防爆真空干燥箱-上海防爆冷库-上海防爆冷柜?-上海浦下防爆设备厂家? | 电梯装饰-北京万达中意电梯装饰有限公司 |