掃一掃
關(guān)注中圖網(wǎng)
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
紐結(jié)理論(第二版)(英文) 版權(quán)信息
- ISBN:9787576706208
- 條形碼:9787576706208 ; 978-7-5767-0620-8
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
紐結(jié)理論(第二版)(英文) 內(nèi)容簡介
本書是一部脫胎自大學(xué)講義,精華源自研究討論班的英文數(shù)學(xué)專著。本書的目的是描述現(xiàn)代紐結(jié)理論的主要概念,以及對初學(xué)者和專業(yè)學(xué)者來說都很有用的完整的證明。
紐結(jié)理論(第二版)(英文) 目錄
Preface
Preface to the second edition
Ⅰ Knots, links, and invariant polynomials
1 Introduction
1.1 Basic definitions
Reidemeister moves. Knot arithmetics
2.1 Polygonal links and Reidemeister moves
2.2 Independence of Reidemeister moves
2.3 Knot arithmetics and Seifert surfaces
3 Links in 2-surfaces in R3. Simplest link invariants
3.1 Knots in 2-surfaces. The classification of torus knots
3.2 The linking coefficient
3.3 The Arf invariant
3.4 The colouring invariant
4 Fundamental group. The knot group
4.1 Digression. Examples of unknotting
4.2 Pundamental group. Basic definitions and examples
4.3 Calculating knot groups
5 The knot quandle and the Conway algebra
5.1 Introduction
5.2 Geometric and algebraic definitions of the knot quandle .
5.2.1 Geometric description of the quandle
5.2.2 Algebraic description of the quandle
5.3 Completeness of the quandle
5.4 Special realisations of the quandle: eolouring invariant, fundamental group, Alexander polynomial
5.5 The Conway algebra and polynomial invariants
5.6 Realisations of the Conway algebra. The Conway-Alexander,Jones, HOMFLY-PT and Kauffman polynomials
5.7 More on Alexander's polynomial. Matrix representation
6 Kauffman's approach to Jones polynomial
6.1 State models in physics and Kauffman's bracket
6.2 Kauffman's forIn of Jones polynomial and skein relations
6.3 Kauffman's two-variable polynomial
7 Properties of Jones polynomials. Khovanov's complex
7.1 Simplest properties
7.2 Tait's first conjecture and Kauffman-Murasugi's theorem
7.3 Menasco-Thistletwaite theorem and the classification of alterhating links
7.4 The third Tait conjecture
7.5 A knot table
7.6 Khovanov's categorification of the Jones polynomial
7.6.1 The two phenomenological conjectures
7.6.2 Spanning tree for Khovanov complex
7.6.3 The Khovanov polynomial and Frobenius extensions
7.6.4 Minimal diagrams of links
8 Lee-Rasmussen invariant, slice knots, and the genus conjecture
8.1 Khovanov homology and Lee homology
8.1.1 Lee's homology
8.1.2 Calculation of Kh'
8.2 The Rasmussen invariant: Definition and basic properties of the invariant
8.2.1 The invariant s
8.2.2 Properties of s
8.3 Behaviour under cobordisms
8.3.1 Elementary cobordisms
8.3.2 Induced maps
8.3.3 Canonical generators
8.3.4 The slice genus
8.4 Computations and relations with other invariants
8.4.1 Using Kh
8.4.2 Positive knots
8.5 R eideIneister moves
Ⅱ Theory of braids
9 Braids, links and representations of braid groups
9.1 Four definitions of the braid group
9.1.1 Geometrical definition
9.1.2 Topological definition
9.1.3 Algebro-geometrical definition
9.1.4 Algebraic definition
9.1.5 Equivalence of the four definitions
……
Ⅲ Vassiliev's invariants.Atoms and d-diagrams
Ⅳ Virtual knots
V Knots, 3-manifolds, and Legendrian knots
D Unsolved problems in knot theory
Bibliography
Index
編輯手記
展開全部
紐結(jié)理論(第二版)(英文) 作者簡介
瓦西里·曼圖洛夫,俄羅斯數(shù)學(xué)家,鮑曼莫斯科國立技術(shù)大學(xué)幾何與拓撲學(xué)教授。
書友推薦
- >
上帝之肋:男人的真實旅程
- >
龍榆生:詞曲概論/大家小書
- >
回憶愛瑪儂
- >
自卑與超越
- >
【精裝繪本】畫給孩子的中國神話
- >
中國人在烏蘇里邊疆區(qū):歷史與人類學(xué)概述
- >
月亮與六便士
- >
二體千字文
本類暢銷