包郵 鏈接結(jié)構(gòu)_關(guān)于嵌入完全圖的直線中鏈接單形的組合結(jié)構(gòu)(英文版)
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
聲音簡史
鏈接結(jié)構(gòu)_關(guān)于嵌入完全圖的直線中鏈接單形的組合結(jié)構(gòu)(英文版) 版權(quán)信息
- ISBN:9787560394237
- 條形碼:9787560394237 ; 978-7-5603-9423-7
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
鏈接結(jié)構(gòu)_關(guān)于嵌入完全圖的直線中鏈接單形的組合結(jié)構(gòu)(英文版) 內(nèi)容簡介
Imagine two triangles in the three-dimensional space, such that an edge of the one pierces through the interior of the other, and vice versa. In such a geometrical situation, any continuous transformation that separates the two triangles would lead to an intersection of their boundaries at one moment, and so we call the two triangles and their boundaries linked (germ: "verschlungene Dreiecke"). It is a known fact in graph theory [8] that any embedding of the complete graph with 6 vertices K6 into R3 has at least one pair of those linked triangles. Prof.Dr.U.Brehm (TU-Dresden), who was my advisor during this diploma thesis, used the so called Gale diagrams to proof that any straight line embedding of the K6 contains either one or exactly three pairs of linked triangles. In Section 1.3.1 we will explain this technique, which leads to the proof of the corresponding Theorem 1.4, and we give visual examples for both cases in Figure 2.
鏈接結(jié)構(gòu)_關(guān)于嵌入完全圖的直線中鏈接單形的組合結(jié)構(gòu)(英文版) 目錄
- >
苦雨齋序跋文-周作人自編集
- >
新文學(xué)天穹兩巨星--魯迅與胡適/紅燭學(xué)術(shù)叢書(紅燭學(xué)術(shù)叢書)
- >
龍榆生:詞曲概論/大家小書
- >
羅曼·羅蘭讀書隨筆-精裝
- >
月亮虎
- >
唐代進(jìn)士錄
- >
有舍有得是人生
- >
史學(xué)評論