中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
計算統(tǒng)計(英文版)(Computational Statistics )

包郵 計算統(tǒng)計(英文版)(Computational Statistics )

作者:田國梁
出版社:科學出版社出版時間:2023-03-01
開本: B5 頁數(shù): 352
本類榜單:自然科學銷量榜
中 圖 價:¥156.0(8.3折) 定價  ¥188.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

計算統(tǒng)計(英文版)(Computational Statistics ) 版權信息

  • ISBN:9787030731890
  • 條形碼:9787030731890 ; 978-7-03-073189-0
  • 裝幀:一般膠版紙
  • 冊數(shù):暫無
  • 重量:暫無
  • 所屬分類:>

計算統(tǒng)計(英文版)(Computational Statistics ) 內容簡介

計算統(tǒng)計(英文版)旨在為統(tǒng)計專業(yè)高年級本科生,研究生提供常用的現(xiàn)代復雜計算方法。它強調計算作為一個基本工具在數(shù)據(jù)分析、統(tǒng)計推斷、統(tǒng)計理論與方法的發(fā)展中的中心地位。包括產生隨機變量的方法、幾個重要的優(yōu)化方法、蒙特卡洛積分方法、貝葉斯計算中的MCMC方法、Bootstrap方法。本書通過組合傳統(tǒng)教材和課堂PPT各自的優(yōu)點,設置了經緯兩條主線,運用塊狀結構呈現(xiàn)知識點,使得每個知識點自我包含,并采用彩色印刷,方便教與學。另外在介紹重要概念時,注重啟發(fā),邏輯順暢,條理清楚。本書可供統(tǒng)計學專業(yè)和數(shù)據(jù)科學與大數(shù)據(jù)技術專業(yè)的本科生、研究生、教師、科研工作者計算統(tǒng)計英文或雙語課程的教材使用,也可作為其他相關專業(yè)人員的參考資料。

計算統(tǒng)計(英文版)(Computational Statistics ) 目錄

Contents
Preface
Chapter 1 Generation of Random Variables 1
1.1 The Inversion Method 3
1.1.1 Generating samples from continuous distributions 3
1.1.2 Generating samples from discrete distributions 7
1.2 The Grid Method 12
1.3 The Rejection Method 15
1.3.1 Generating samples from continuous distributions 15
1.3.2 The efficiency of the rejection method 18
1.3.3 Several examples 20
1.3.4 Log-concave densities 24
1.4 The Sampling/Importance Resampling (SIR) Method 27
1.4.1 The SIR without replacement 28
1.4.2 Theoretical justification 30
1.5 The Stochastic Representation (SR) Method.32
1.5.1 The‘d=’operator 32
1.5.2 Many-to-one SR for univariate case 34
1.5.3 SR for multivariate case 36
1.5.4 Mixture representation 39
1.6 The Conditional Sampling Method 42
Exercise 1 47
Chapter 2 Optimization 53
2.1 A Review of Some Standard Concepts 54
2.1.1 Order relations 54
2.1.2 Stationary points 57
2.1.3 Convex and concave functions 60
2.1.4 Mean value theorem 61
2.1.5 Taylor theorem 63
2.1.6 Rates of convergence 64
2.1.7 The case of multiple dimensions 64
2.2 Newton’s Method and Its Variants 66
2.2.1 Newton’s method and root finding 67
2.2.2 Newton’s method and optimization 71
2.2.3 The Newton–Raphson algorithm 72
2.2.4 The Fisher scoring algorithm 75
2.2.5 Application to logistic regression 76
2.3 The Expectation–Maximization (EM) Algorithm 80
2.3.1 The formulation of the EM algorithm 81
2.3.2 The ascent property of the EM algorithm 89
2.3.3 Missing information principle and standard errors 92
2.4 The ECM Algorithm 95
2.5 Minorization–Maximization (MM) Algorithms 100
2.5.1 A brief review of MM algorithms 100
2.5.2 The MM idea 101
2.5.3 The quadratic lower–bound algorithm 103
2.5.4 The De Pierro algorithm 106
Exercise 2 115
Chapter 3 Integration 125
3.1 Laplace Approximations 126
3.2 Riemannian Simulation 129
3.2.1 Classical Monte Carlo integration 129
3.2.2 Motivation for Riemannian simulation 132
3.2.3 Variance of the Riemannian sum estimator 133
3.3 The Importance Sampling Method 135
3.3.1 The formulation of the importance sampling method 135
3.3.2 The weighted estimator 138
3.4 Variance Reduction 141
3.4.1 Antithetic variables 141
3.4.2 Control variables 145
Exercise 3 146
Chapter 4 Markov Chain Monte Carlo Methods 149
4.1 Bayes Formulae and Inverse Bayes Formulae (IBF) 151
4.1.1 The point,function- and sampling-wise IBF 152
4.1.2 Monte Carlo versions of the IBF 160
4.1.3 Generalization to the case of three random variables 163
4.2 The Bayesian Methodology 163
4.2.1 The posterior distribution 165
4.2.2 Nuisance parameters 167
4.2.3 Posterior predictive distribution 169
4.2.4 Bayes factor 172
4.2.5 Estimation of marginal likelihood 173
4.3 The Data Augmentation (DA) Algorithm 175
4.3.1 Missing data mechanism 175
4.3.2 The idea of data augmentation 177
4.3.3 The original DA algorithm 178
4.3.4 Connection with the IBF 180
4.4 The Gibbs sampler 181
4.4.1 The formulation of the Gibbs sampling 182
4.4.2 The two–block Gibbs sampling 184
4.5 The Exact IBF Sampling 187
4.6 The IBF sampler 191
4.6.1 Background and the basic idea 191
4.6.2 The formulation of the IBF sampler 192
4.6.3 Theoretical justification for choosing θ0 =.θ 194
Exercise 4 196
Chapter 5 Bootstrap Methods 203
5.1 Bootstrap Confidence Intervals 203
5.1.1 Parametric bootstrap 203
5.1.2 Non-parametric bootstrap 213
5.2 Hypothesis Testing with the Bootstrap 219
5.2.1 Testing equality of two unknown distributions 219
5.2.2 Testing equality of two group means 223
5.2.3 One–sample problem 228
Exercise 5 231
Appendix A Some Statistical Distributions and Stochastic
Processes 233
A.1 Discrete Distributions 233
A.1.1 Finite discrete distribution 233
A.1.2 Hypergeometric distribution 234
A.1.3 Binomial and related distributions 235
A.1.4 Poisson and related distributions 237
A.1.5 Negative–binomial and related distributions 240
A.1.6 Generalized Poisson and related distributions 242
A.1.7 Multinomial and related distributions 243
A.2 Continuous Distributions 245
A.2.1 Uniform, beta and Dirichlet distributions 245
A.2.2 Logistic and Laplace distributions 248
A.2.3 Exponential, gamma and inverse gamma distributions 249
A.2.4 Chi-square, F and inverse chi-square distributions 251
A.2.5 Normal, lognormal and inverse Gaussian distributions 252
A.2.6 Multivariate normal distribution 254
A.2.7 Student’s t and multivariate t distributions 255
A.2.8 Wishart and inverse Wishart distributions 256
A.3 Stochastic Processes 258
A.3.1 Homogeneous Poisson process 258
A.3.2 Nonhomogeneous Poisson process 259
Appendix B R Programming
展開全部

計算統(tǒng)計(英文版)(Computational Statistics ) 節(jié)選

Chapter 1 Generation of Random Variables 1 Why is this textbook important to you? 1.1 As a computational toolbox in the frequentist statistics In the frequent ist statistics, one of the main tasks is to find maximum likelihood estimates of the parameter vector, where 0 is the parameter space (see Chapter 2). Next, it is also important to calculate the standard deviation of or confidence interval , where is an arbitrary function of 6 (see Chapters 1 and 5). 1.2 As a computational toolbox in the Bayesian statistics In the Bayesian statistics, one often needs to compute posterior moments such asand where can be viewed as a random variable and denotes the observed data (see Chapter 3). More importantly, we would like to generate samples from posterior distributions (see Chapters 1 and 4). 1.3 Benefiting your whole academic career This textbook can help you when you write academic papers, research reports, grant proposals, statistical books, thesis and so on. This textbook can also serve your other courses including assignments and projects. 2 Chapter 2 Why do we need chapter 1? We are faced with a dual world. 2.1 The real world: From practice Suppose that we have observed izations of a set of independent and If we could accept the null hypothesis Hq:where both the population density and the parameter vector 0 are unknown, then we can do many jobs. For example, we can estimate the , and other unknown quantities. 2.2 The statistical world: From theory to practice Given a theoretical density function or a cumulative distribution function , we want to generate a random sample from or , which is the topic of Chapter 1. For example, we can use the sample average or the sample variance to estimate the population mean or the population variance, and so on. 3 Aims of chapter 1 In Chapter 1, we will introduce some basic Monte Carlo simulation techniques for generating random samples from univariate and multivariate distributions with known parameters. These techniques also play a critical role in Monte Carlo integration. We assume that random numbers or r.v.’s uniformly distributed in the unit interval can be satisfactorily produced on the computer. 1 Generation of Random Variables to theory,xn,which can be viewed as real-identically distributed We focus on methods for fast generating non-uniform r.v. 1.1 The Inversion Method 1.1.1Generating samples from continuous distributions 4 Formulation of the inversion method 4.1 A basic result 4.2 The inversion method 4.3 Several examples Example 1.1 Solution: Step 1: Step 2: R code: Equivalent R code: Comment 3: Example 1.2 Solution: Step 1: Step 2: R code: Example 1.3 Solution: Step 1: Step 2:

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 泰国试管婴儿_泰国第三代试管婴儿费用|成功率|医院—新生代海外医疗 | 舞台木地板厂家_体育运动木地板_室内篮球馆木地板_实木运动地板厂家_欧氏篮球地板推荐 | 乳化沥青设备_改性沥青设备_沥青加温罐_德州市昊通路桥工程有限公司 | HV全空气系统_杭州暖通公司—杭州斯培尔冷暖设备有限公司 | 数年网路-免费在线工具您的在线工具箱-shuyear.com | SRRC认证_电磁兼容_EMC测试整改_FCC认证_SDOC认证-深圳市环测威检测技术有限公司 | 济南铝方通-济南铝方通价格-济南方通厂家-山东鲁方通建材有限公司 | 手术室净化厂家_成都实验室装修公司_无尘车间施工单位_洁净室工程建设团队-四川华锐16年行业经验 | 深圳诚暄fpc首页-柔性线路板,fpc柔性线路板打样生产厂家 | 自动焊锡机_点胶机_螺丝机-锐驰机器人| 智成电子深圳tdk一级代理-提供TDK电容电感贴片蜂鸣器磁芯lambda电源代理经销,TDK代理商有哪些TDK一级代理商排名查询。-深圳tdk一级代理 | 暖气片十大品牌厂家_铜铝复合暖气片厂家_暖气片什么牌子好_欣鑫达散热器 | 江苏全风,高压风机,全风环保风机,全风环形高压风机,防爆高压风机厂家-江苏全风环保科技有限公司(官网) | C形臂_动态平板DR_动态平板胃肠机生产厂家制造商-普爱医疗 | 金属软管_不锈钢金属软管_巩义市润达管道设备制造有限公司 | 仓储货架_南京货架_钢制托盘_仓储笼_隔离网_环球零件盒_诺力液压车_货架-南京一品仓储设备制造公司 | 丝杆升降机-不锈钢丝杆升降机-非标定制丝杆升降机厂家-山东鑫光减速机有限公司 | 企典软件一站式企业管理平台,可私有、本地化部署!在线CRM客户关系管理系统|移动办公OA管理系统|HR人事管理系统|人力 | 高中学习网-高考生信息学习必备平台 | 天空彩票天下彩,天空彩天空彩票免费资料,天空彩票与你同行开奖,天下彩正版资料大全 | 高楼航空障碍灯厂家哪家好_航空障碍灯厂家_广州北斗星障碍灯有限公司 | Pos机办理_个人商户免费POS机申请-拉卡拉办理网 | 中高频感应加热设备|高频淬火设备|超音频感应加热电源|不锈钢管光亮退火机|真空管烤消设备 - 郑州蓝硕工业炉设备有限公司 | 家用净水器代理批发加盟_净水机招商代理_全屋净水器定制品牌_【劳伦斯官网】 | 烟台游艇培训,威海游艇培训-烟台市邮轮游艇行业协会 | RTO换向阀_VOC高温阀门_加热炉切断阀_双偏心软密封蝶阀_煤气蝶阀_提升阀-湖北霍科德阀门有限公司 | ISO9001认证咨询_iso9001企业认证代理机构_14001|18001|16949|50430认证-艾世欧认证网 | 四川成人高考_四川成考报名网| 空心明胶胶囊|植物胶囊|清真胶囊|浙江绿键胶囊有限公司欢迎您! | 六自由度平台_六自由度运动平台_三自由度摇摆台—南京全控科技 | 99文库_实习生实用的范文资料文库站 | 中药二氧化硫测定仪,食品二氧化硫测定仪|俊腾百科 | 上海皓越真空设备有限公司官网-真空炉-真空热压烧结炉-sps放电等离子烧结炉 | 建筑资质代办-建筑企业资质代办机构-建筑资质代办公司 | 杭州网络公司_百度SEO优化-外贸网络推广_抖音小程序开发-杭州乐软科技有限公司 | 天津散热器_天津暖气片_天津安尼威尔散热器制造有限公司 | 无味渗透剂,泡沫抑尘剂,烷基糖苷-威海威能化工有限公司 | 工作心得_读书心得_学习心得_找心得体会范文就上学道文库 | 电抗器-能曼电气-电抗器专业制造商| 农产品溯源系统_农产品质量安全追溯系统_溯源系统 | 车件|铜件|车削件|车床加工|五金冲压件-PIN针,精密车件定制专业厂商【东莞品晔】 |