中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)
> >
幾何分析綜述2020(英文版)

包郵 幾何分析綜述2020(英文版)

作者:田剛
出版社:科學(xué)出版社出版時(shí)間:2022-06-01
開本: B5 頁數(shù): 140
中 圖 價(jià):¥62.6(8.0折) 定價(jià)  ¥78.0 登錄后可看到會(huì)員價(jià)
加入購物車 收藏
開年大促, 全場(chǎng)包郵
?新疆、西藏除外
本類五星書更多>

幾何分析綜述2020(英文版) 版權(quán)信息

  • ISBN:9787030723260
  • 條形碼:9787030723260 ; 978-7-03-072326-0
  • 裝幀:一般膠版紙
  • 冊(cè)數(shù):暫無
  • 重量:暫無
  • 所屬分類:>

幾何分析綜述2020(英文版) 內(nèi)容簡(jiǎn)介

本書內(nèi)容是幾何分析領(lǐng)域很好的科研工作者所寫的綜述性報(bào)告,文章匯報(bào)了幾何分析領(lǐng)域的前沿?zé)狳c(diǎn)。包括包括:偏微分方程和黎曼幾何、不變體系、幾何可變體系、瞬變體系和剛片、自由度與辛幾何、代數(shù)幾何和物理中的超弦理論、二維非線性偏微分方程、Ricci流、Gromov-Witten不變量理論、Kaehler-Ricci流,Kaehler-Ricci孤立子專享性,調(diào)和映射緊性,高余維平均曲率流等。本書適合高年級(jí)本科生,研究生和相關(guān)領(lǐng)域的科研工作者閱讀參考。

幾何分析綜述2020(英文版) 目錄

Contents
Conformal Metrics of Constant Scalar Curvature and Constant Boundary Mean Curvature Xuezhang Chen 1
Some Schwarz Type Lemmas on Pseudo-Hermitian Manifolds Yuxin Dong 13
Curvature Flows in Hyperbolic Space and Their Applications Yingxiang Hu and Haizhong Li 30
Localization of η-Invariants and Differential K-Theory Bo Liu and Xiaonan Ma 52
A Brief Survey on Gromov-Hausdorff Convergence of K.hler Manifolds Gang Liu 63
The Relative Isoperimetric Inequality Lei Liu, Guofang Wang and Liangjun Weng 75
An Eigenvalue Estimate for the-Laplacian Associated to a Line Bundle with Singular Metrics Jingcao Wu 91
Stability Thresholds and Canonical Metrics Kewei Zhang 106
展開全部

幾何分析綜述2020(英文版) 節(jié)選

Conformal Metrics of Constant Scalar Curvature and Constant Boundary Mean Curvature Xuezhang Chen Department of Mathematics, Nanjing University, Nanjing, China Abstract This is a survey of recent results of the author and his collaborators on the existence and compactness/non-compactness of conformal metrics with constant scalar curvature and constant boundary mean curvature. We mainly focus our efforts on proving a conjecture proposed by Zheng-Chao Han and Yanyan Li in [16], which is a refined version of the boundary Yamabe problem. 1 Motivation The boundary Yamabe problem was initially studied by Escobar in 1992, scalar flat with constant boundary mean curvature problem in [11] and constant scalar curvature with minimal boundary problem in [12], respectively. Readers may refer to [7] and references therein for more comments on these two problems. The problem of the existence of conformal metrics with (nonzero) constant scalar curvature and (nonzero) constant boundary mean curvature was also raised by Escobar [10] in 1996, and a closely related Sobolev trace inequality in the halfspace was also established in Escobar [13]. A refined version was proposed by Zheng-Chao Han and Yanyan Li [16] in the following way: Conjecture 1(Han-Li, 1999) Let (M, g0) be an n-dimensional smooth compact Riemannian manifold of positive Yamabe constant with boundary and*, thenthere exists a conformal metric such that its scalar curvature equals and its boundary mean curvature equals any real number c. Furthermore, Han-Li confirmed their conjecture in several cases: and the boundary admits at least one non-umbilic point; see [15]. and (M, g0) is locally conformally flat with umbilic boundary; see [16]. [14]. However, this conjecture is far less developed after Han-Li’s work. Around 2015, we began to investigate the boundary Yamabe problem and related topics, including Han-Li’s conjecture. Many new technical tools (e.g., conformal Fermi coordinates introduced by Marques [17] etc.) and methods (especially, the curvature flow approach) have emerged after the resolution of the Yamabe problem. This enables us to make some further developments on this conjecture, which also brings some natural applications in conformal geometry and in establishing new geometric inequalities. For instance, some new geometric inequalities on Poincaré-Einstein manifolds are discovered and rigidity theorems in the quality cases are established in Chen-Lai-Wang [6]. 2 Preliminary Let (M, g0) be a smooth compact Riemannian manifold of dimension with boundary . be the conformal Laplacian and hg0 be the first order boundary operator, where ν0 = νg0 is the outward unit normal on M, Rg0 and hg0 be the scalar curvature and the boundary mean curvature with respect to g0, respectively. The pair (Lg0 ,Bg0) is conformally covariant: For any and with. (2.1) We introduce two types of the (generalized) Yamabe constants by respectively. It is not hard to know that Y if and only if. Readers refer to [11, 12, 8, 7] for more properties of the above Yamabe constants. The Han-Li’s conjecture is equivalent to the solvability of positive solutions to PDE: For all (2.3) We only focus on a compact manifold of positive Yamabe constant with boundary, which is the most interesting case. A boundary bubble is defined by. Here en is the unit direction vector in n-th coordinate and. Then W. satisfies. (2.4) Before presenting our main results, we need to set up some notations. For . We define where Wg0 is the Weyl tensor in M and πg(shù)0 is the second fundamental form on .M with its the trace-free part . 3 Constrained variational problems We define the scalar curvature and mean curvature functional by . Consider the minimizing problem under either of the following constraints: i. Homogeneous constraint: ii. Non-homogeneous constraint: It is not hard to verify that any positive smooth minimizer of the above problem can provide a conformal metric with constant scalar curvature and constant boundary mean curvature. 3.1 Existence of minimizers: Subcritical approximations Since the method of subcritical approximations has been successfully used to solve the Yamabe problem, it is natural to be applied to this critical growth problem. For the homogeneous constraint, the strategy of subcritical approximations method is as follows. and Clearly, it follows from (2.1) that Ya, is also a conformal invariant. Step 1. A criterion of the existence of the minimizers of Ya,b. for any . A direct method in calculus variation derives the existence of positive smooth minimizers for Qqa,b[u] in the subcritical case , with the help of the strict geometric inequality below we can overcome the difficulty in the critical case, due to the loss of compactness of the embedding of Sobolev and trace inequalities. Proposition 2 If for any a, b ∈ R+, then can be achieved

商品評(píng)論(0條)
暫無評(píng)論……
書友推薦
本類暢銷
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: 天长市晶耀仪表有限公司| 开平机_纵剪机厂家_开平机生产厂家|诚信互赢-泰安瑞烨精工机械制造有限公司 | 变色龙PPT-国内原创PPT模板交易平台 - PPT贰零 - 西安聚讯网络科技有限公司 | Dataforth隔离信号调理模块-信号放大模块-加速度振动传感器-北京康泰电子有限公司 | 有声小说,听书,听小说资源库-听世界网 | 碳纤维复合材料制品生产定制工厂订制厂家-凯夫拉凯芙拉碳纤维手机壳套-碳纤维雪茄盒外壳套-深圳市润大世纪新材料科技有限公司 | 超声波成孔成槽质量检测仪-压浆机-桥梁预应力智能张拉设备-上海硕冠检测设备有限公司 | 东莞动力锂电池保护板_BMS智能软件保护板_锂电池主动均衡保护板-东莞市倡芯电子科技有限公司 | 哈希余氯测定仪,分光光度计,ph在线监测仪,浊度测定仪,试剂-上海京灿精密机械有限公司 | 篷房|仓储篷房|铝合金篷房|体育篷房|篷房厂家-华烨建筑科技官网 知名电动蝶阀,电动球阀,气动蝶阀,气动球阀生产厂家|价格透明-【固菲阀门官网】 | 微动开关厂家-东莞市德沃电子科技有限公司 | 垃圾压缩设备_垃圾处理设备_智能移动式垃圾压缩设备--山东明莱环保设备有限公司 | 亚洲工业智能制造领域专业门户网站 - 亚洲自动化与机器人网 | 单锥双螺旋混合机_双螺旋锥形混合机-无锡新洋设备科技有限公司 | 长沙印刷厂-包装印刷-画册印刷厂家-湖南省日大彩色印务有限公司 青州搬家公司电话_青州搬家公司哪家好「鸿喜」青州搬家 | 保镖公司-私人保镖-深圳保镖公司【环宇兄弟保镖】 | 胜为光纤光缆_光纤跳线_单模尾纤_光纤收发器_ODF光纤配线架厂家直销_北京睿创胜为科技有限公司 - 北京睿创胜为科技有限公司 | 合肥弱电工程_安徽安防工程_智能化工程公司-合肥雷润 | 伊卡洛斯软装首页-电动窗帘,别墅窗帘,定制窗帘,江浙沪1000+别墅窗帘案例 | 恒湿机_除湿加湿一体机_恒湿净化消毒一体机厂家-杭州英腾电器有限公司 | 拖链电缆_柔性电缆_伺服电缆_坦克链电缆-深圳市顺电工业电缆有限公司 | ETFE膜结构_PTFE膜结构_空间钢结构_膜结构_张拉膜_浙江萬豪空间结构集团有限公司 | 储气罐,真空罐,缓冲罐,隔膜气压罐厂家批发价格,空压机储气罐规格型号-上海申容压力容器集团有限公司 | 对夹式止回阀_对夹式蝶形止回阀_对夹式软密封止回阀_超薄型止回阀_不锈钢底阀-温州上炬阀门科技有限公司 | GAST/BRIWATEC/CINCINNATI/KARL-KLEIN/ZIEHL-ABEGG风机|亚喜科技 | 液氮罐_液氮容器_自增压液氮罐-北京君方科仪科技发展有限公司 | 电动垃圾车,垃圾清运车-江苏速利达机车有限公司 | 超声波分散机-均质机-萃取仪-超声波涂料分散设备-杭州精浩 | 凝胶成像系统(wb成像系统)百科-上海嘉鹏 | 重庆磨床过滤机,重庆纸带过滤机,机床伸缩钣金,重庆机床钣金护罩-重庆达鸿兴精密机械制造有限公司 | 无菌实验室规划装修设计-一体化实验室承包-北京洁净净化工程建设施工-北京航天科恩实验室装备工程技术有限公司 | 钢格栅板_钢格板网_格栅板-做专业的热镀锌钢格栅板厂家-安平县迎瑞丝网制造有限公司 | 时代北利离心机,实验室离心机,医用离心机,低速离心机DT5-2,美国SKC采样泵-上海京工实业有限公司 工业电炉,台车式电炉_厂家-淄博申华工业电炉有限公司 | MES系统工业智能终端_生产管理看板/安灯/ESOP/静电监控_讯鹏科技 | 专业的新乡振动筛厂家-振动筛品质保障-环保振动筛价格—新乡市德科筛分机械有限公司 | 全自动五线打端沾锡机,全自动裁线剥皮双头沾锡机,全自动尼龙扎带机-东莞市海文能机械设备有限公司 | 媒介云-全网整合营销_成都新闻媒体发稿_软文发布平台 | 污水/卧式/潜水/钻井/矿用/大型/小型/泥浆泵,价格,参数,型号,厂家 - 安平县鼎千泵业制造厂 | 砍排机-锯骨机-冻肉切丁机-熟肉切片机-预制菜生产线一站式服务厂商 - 广州市祥九瑞盈机械设备有限公司 | 气动绞车,山东气动绞车,气动绞车厂家-烟台博海石油机械有限公司 气动隔膜泵厂家-温州永嘉定远泵阀有限公司 | RO反渗透设备_厂家_价格_河南郑州江宇环保科技有限公司 |