數學分析(英文版·原書第2版·典藏版) 版權信息
- ISBN:9787111706106
- 條形碼:9787111706106 ; 978-7-111-70610-6
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
數學分析(英文版·原書第2版·典藏版) 本書特色
適讀人群 :數學系本科生本書是一部現代數學名著。自20世紀70年代面世以來,一直受到西方學術界、教育界的廣泛推崇,被許多知名大學指定為教材。 本書是在“高等微積分”的水平上闡述數學分析中的論題,提供了從初等微積分向實變函數論及復變函數論中的高等課程的一種過渡,而且介紹了某些涉及現代分析的抽象理論.內容既涵蓋我國大學的數學分析課程的內容,又包括勒貝格積分及柯西定理和留數計算等. 本書條理清晰,內容精練,言簡意賅,適合作為高等院校本科生數學分析課程的教材.
數學分析(英文版·原書第2版·典藏版) 內容簡介
本書是在“高等微積分”的水平上闡述數學分析中的論題,提供了從初等微積分向實變函數論及復變函數論中的高等課程的一種過渡,而且介紹了某些涉及現代分析的抽象理論.內容既涵蓋我國大學的數學分析課程的內容,又包括勒貝格積分及柯西定理和留數計算等.本書條理清晰,內容精練,言簡意賅,適合作為高等院校本科生數學分析課程的教材.
數學分析(英文版·原書第2版·典藏版) 目錄
1.1 Introduction 1
1.2 The field axioms . 1
1.3 The order axioms 2
1.4 Geometric representation of real numbers 3
1.5 Intervals 3
1.6 Integers 4
1.7 The unique factorization theorem for integers 4
1.8 Rational numbers 6
1.9 Irrational numbers 7
1.10 Upper bounds, maximum element, least upper bound(supremum) . 8
1.11 The completeness axiom 9
1.12 Some properties of the supremum 9
1.13 Properties of the integers deduced from the completeness axiom 10
1.14 The Archimedean property of the real-number system . 10
1.15 Rational numbers with finite decimal representation 11
1.16 Finite decimal approximations to real numbers 11
1.17 Infinite decimal representation of real numbers . 12
1.18 Absolute values and the triangle inequality 12
1.19 The Cauchy—Schwarz inequality 13
1.20 Plus and minus infinity and the extended real number system R* 14
1.21 Complex numbers 15
1.22 Geometric representation of complex numbers 17
1.23 The imaginary unit 18
1.24 Absolute value of a complex number . 18
1.25 Impossibility of ordering the complex numbers . 19
1.26 Complex exponentials 19
1.27 Further properties of complex exponentials 20
1.28 The argument of a complex number . 20
1.29 Integral powers and roots of complex numbers . 21
1.30 Complex logarithms 22
1.31 Complex powers 23
1.32 Complex sines and cosines 24
1.33 Infinity and the extended complex plane C* 24
Exercises 25
Chapter 2 Some Basic Notions of Set Theory
2.1 Introductiou 32
2.2 Notations 32
2.3 Ordered pairs 33
2.4 Cartesian product of two sets 33
2.5 Relations and functions 34
2.6 Further terminology concerning functions 35
2.7 One-to-one functions and inverses 36
2.8 Composite functions 37
2.9 Sequences. 38
2.10 Similar (equinumerous) sets 38
2.11 Finite and infinite sets 39
2.12 Countable and uncountable sets 39
2.13 Uncountability of the real-number system 42
2.14 Set algebra 43
2.15 Countable collections of countable sets
Exercises 43
Chapter 3 Elements of Point Set Topology
3.1 Introduction 47
3.2 Euclidean space R't 47
3.3 Open balls and open sets in R* 49
3.4 The structure of open sets in RH 50
3.5 Closed sets . 52
3.6 Adhèrent points. Accumulation points 52
3.7 Closed sets and adhèrent points 53
3.8 The Bolzano—Weierstrass theorem 54
3.9 The Cantor intersection theorem 56
3.10 The Lindel?f covering theorem 56
3.11 The Heine—Borel covering theorem 58
3.12 Compactness in R‘ 59
3.13 Metric spaces 60
3.14 Point set topology in metric spaces 61
3.15 Compact subsets of a metric space 63
3.16 Boundary of a set
Exercises 65
Chaqter 4 Limits and Continuity
4.1 Introduction 70
4.2 Convergent sequences in a metric space 72
4.3 Cauchy sequences 74
4.4 Complete metric spaces . 74
4.5 Limit of a function 76
4.6 Limits of complex-valued functions
4.7 Limits of vector-valued functions 77
4.8 Continuous functions 78
4.9 Continuity of composite functions.
4.10 Continuous complex-valued and vector-valued functions 79
4.11 Examples of continuous functions 80
4.12 Continuity and inverse images of open or closed sets 80
4.13 Functions continuous on compact sets 81
4.14 Topolo$ical mappings (homeomorphisms) 82
4.15 Bolzano’s theorem 84
4.16 Connectedness 84
4.17 Components of a metric space . 86
4.18 Arcwise connectedness 87
4.19 Uniform continuity 88
4.20 Uniform continuity and compact sets 90
4.21 Fixed-point theorem for contractions 91
4.22 Discontinuities of real-valued functions 92
4.23 Monotonic functions 94
Exercises 95
Chapter 5 DerJvatives
5.1Introduction 104
5.2 Definition of derivative .104
5.3 Derivatives and continuity 105
5.4 Algebra of derivatives106
5.5 The chain rule 106
5.6 One-si
數學分析(英文版·原書第2版·典藏版) 作者簡介
湯姆·M. 阿波斯托爾(Tom M. Apostol)是加州理工學院數學系榮譽教授。他于1946年在華盛頓大學西雅圖分校獲得數學碩士學位,于1948年在加州大學伯克利分校獲得數學博士學位。
- >
小考拉的故事-套裝共3冊
- >
我與地壇
- >
朝聞道
- >
羅庸西南聯大授課錄
- >
【精裝繪本】畫給孩子的中國神話
- >
有舍有得是人生
- >
我從未如此眷戀人間
- >
詩經-先民的歌唱