掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
伽利略空間和偽伽利略空間中一些特殊曲線的幾何性質(英文) 版權信息
- ISBN:9787560393551
- 條形碼:9787560393551 ; 978-7-5603-9355-1
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
伽利略空間和偽伽利略空間中一些特殊曲線的幾何性質(英文) 內容簡介
三大改善活動機制簡潔高效,是保障精益取得成果的重要抓手,更是精益管理活動的重中之重。該機制是作者推行精益管理活動20多年實踐精髓的總結。本書圍繞三大機制,將這套歷經檢驗、行之有效的方法系統地整理總結出來。全書共分五篇,分別對全員經驗改善活動的定義、愿景、目標、路徑和實戰事例等內容進行敘述,并闡述了全員推行精益改善的三大機制的目的和措施,*后講述了課題改善中發現問題、分析問題和解決問題的邏輯、路徑與方法。
伽利略空間和偽伽利略空間中一些特殊曲線的幾何性質(英文) 目錄
1 Basic Concepts and Previous Studies
1.1 Introduction
1.2 The three-dimensional Galilean space G
1.2.1 Curves in Galilean space G
1.2.2 Bishop frames
1.3 Natural geometry of ruled surfaces in G
1.3.1 Darboux frame of a curve lying on the ruled surface
of type I
1.3.2 Darboux frame of a curve lying on the ruled surface
of type III
1.4 Helices in G
1.5 Bertrand curves in G
1.6 Geometry ofthe pseudo—Galilean space G
1.6.1 Curves in pseudo-Galilean space
1.6.2 Bishop frames in Gi
1.7 Natural geometry of ruled surfaces in G
1.7.1 Darboux frame of a curve lying on a ruled surface in
G
1.8 Helices in G
1.9 Normal and rectifying curves in Gj
2 Spherical Indicatrices of Helices in Galilean Spaces
2.1 Introduction
2.2 Spherical images of special curves in Galilean space
2.2.1 A unit speed curve
2.2.2 Spherical curves of the position vector of an arbitrary
CUrVe
2.2.3 Bishop spherical images of an arbitrary curve
2.3 Example
2.4 Spherical curves in pseudo-Galilean space
2.4.1 Spherical indicatrices of an arbitrary curve
2.5 spherical images with Bishop frame
2.6 Spherical images with Bishop frame of a circular helix
2.7 Spherical images with Bishop frame of Salkowski curve
2.8 Spherical images with Bishop frame of Anti—Salkowski curve
2.9 Examples
3 Smarandache Curves of Helices in the Galilean 3-Space
3.1 Geonmtric prelinfinaries
3.2 Special Smarandac,he(turves in Galilean geometry
3.2.1 Smarandache curves of a unit speed curve
3.3 Relations among spherical indicatrices of SOUlC Smarandache curves
3.3.1 Smarandache curves of all arbitrary curve with respect to standard frame
3.4 Special Smarandache curves according to Darboux frame in G
3.5 Exmnples
3.6 Smaremdache curves of special curves iIl pseudo-Galilean geolnetry
3.6.1 Smarandache curves of aIl arbitrary curve
3.6.2 Special Slnarandache curves according to Darboux fraum
3.7 Exainples
4 Bertrand Curves in the Galilean and Pseudo—Galilean Spaces
4.1 Introductioll
4.2 Bertrand partner curves accoroding to Freimt fraiue
4.3 Bertrand curves according to Darboux franm in G3
4.4 Exainples
4.5 Bertrand curves ill pseudo-Oalilean geometry
4.6 Bertrand curve~according to Darboux flame in G3/1
4.7 Examples
5 Normal, Osculating and Rectifying Curves in Galilean Spaces
5.1 Introductiou
5.2 Bishop frame of the second type in G3
5.3 Associated curves according to Bishop fralne in G.
5.4 Associated curves in the pseudo-Galilean space G3/1
Bibliography
編輯手記
1.1 Introduction
1.2 The three-dimensional Galilean space G
1.2.1 Curves in Galilean space G
1.2.2 Bishop frames
1.3 Natural geometry of ruled surfaces in G
1.3.1 Darboux frame of a curve lying on the ruled surface
of type I
1.3.2 Darboux frame of a curve lying on the ruled surface
of type III
1.4 Helices in G
1.5 Bertrand curves in G
1.6 Geometry ofthe pseudo—Galilean space G
1.6.1 Curves in pseudo-Galilean space
1.6.2 Bishop frames in Gi
1.7 Natural geometry of ruled surfaces in G
1.7.1 Darboux frame of a curve lying on a ruled surface in
G
1.8 Helices in G
1.9 Normal and rectifying curves in Gj
2 Spherical Indicatrices of Helices in Galilean Spaces
2.1 Introduction
2.2 Spherical images of special curves in Galilean space
2.2.1 A unit speed curve
2.2.2 Spherical curves of the position vector of an arbitrary
CUrVe
2.2.3 Bishop spherical images of an arbitrary curve
2.3 Example
2.4 Spherical curves in pseudo-Galilean space
2.4.1 Spherical indicatrices of an arbitrary curve
2.5 spherical images with Bishop frame
2.6 Spherical images with Bishop frame of a circular helix
2.7 Spherical images with Bishop frame of Salkowski curve
2.8 Spherical images with Bishop frame of Anti—Salkowski curve
2.9 Examples
3 Smarandache Curves of Helices in the Galilean 3-Space
3.1 Geonmtric prelinfinaries
3.2 Special Smarandac,he(turves in Galilean geometry
3.2.1 Smarandache curves of a unit speed curve
3.3 Relations among spherical indicatrices of SOUlC Smarandache curves
3.3.1 Smarandache curves of all arbitrary curve with respect to standard frame
3.4 Special Smarandache curves according to Darboux frame in G
3.5 Exmnples
3.6 Smaremdache curves of special curves iIl pseudo-Galilean geolnetry
3.6.1 Smarandache curves of aIl arbitrary curve
3.6.2 Special Slnarandache curves according to Darboux fraum
3.7 Exainples
4 Bertrand Curves in the Galilean and Pseudo—Galilean Spaces
4.1 Introductioll
4.2 Bertrand partner curves accoroding to Freimt fraiue
4.3 Bertrand curves according to Darboux franm in G3
4.4 Exainples
4.5 Bertrand curves ill pseudo-Oalilean geometry
4.6 Bertrand curve~according to Darboux flame in G3/1
4.7 Examples
5 Normal, Osculating and Rectifying Curves in Galilean Spaces
5.1 Introductiou
5.2 Bishop frame of the second type in G3
5.3 Associated curves according to Bishop fralne in G.
5.4 Associated curves in the pseudo-Galilean space G3/1
Bibliography
編輯手記
展開全部
伽利略空間和偽伽利略空間中一些特殊曲線的幾何性質(英文) 作者簡介
杜雅·法加爾(Doaa Farghal),博士.她曾在埃及的蘇哈賈大學學習,并于2009年從數學系畢業。其研究方向為微分幾何。
書友推薦
- >
名家帶你讀魯迅:故事新編
- >
有舍有得是人生
- >
隨園食單
- >
詩經-先民的歌唱
- >
我與地壇
- >
莉莉和章魚
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
人文閱讀與收藏·良友文學叢書:一天的工作
本類暢銷