掃一掃
關(guān)注中圖網(wǎng)
官方微博
包郵 廣義膨脹和齊性——利用奇性構(gòu)造齊次系統(tǒng)的李雅普諾夫函數(shù)和控制律(英文)
作者:(土)S.埃姆雷·圖納
開本:
32開
頁數(shù):
125
本類榜單:自然科學(xué)銷量榜
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
聲音簡(jiǎn)史
中圖價(jià):¥30.8
加入購物車
廣義膨脹和齊性——利用奇性構(gòu)造齊次系統(tǒng)的李雅普諾夫函數(shù)和控制律(英文) 版權(quán)信息
- ISBN:9787560395548
- 條形碼:9787560395548 ; 978-7-5603-9554-8
- 裝幀:一般膠版紙
- 冊(cè)數(shù):暫無
- 重量:暫無
- 所屬分類:>
廣義膨脹和齊性——利用奇性構(gòu)造齊次系統(tǒng)的李雅普諾夫函數(shù)和控制律(英文) 內(nèi)容簡(jiǎn)介
本書是一部英文版數(shù)學(xué)專著。李雅普諾夫不僅搶先發(fā)售給出了運(yùn)動(dòng)穩(wěn)定性的科學(xué)定義,而且創(chuàng)立了以他的名字命名的兩種有名方法,即李雅普諾夫直接方法和李雅普諾夫第二方法,直接方法指出了,在什么情況下,非線性穩(wěn)定性冋題可以按一次近似解決.第二方法指岀了確定運(yùn)動(dòng)穩(wěn)定性問題的關(guān)鍵是要尋找李雅普諾夫函數(shù).目前,由于工程技術(shù)中提出了大量的運(yùn)動(dòng)穩(wěn)定性問題,因此,仍然是十分活躍的研究領(lǐng)域。
廣義膨脹和齊性——利用奇性構(gòu)造齊次系統(tǒng)的李雅普諾夫函數(shù)和控制律(英文) 目錄
1 Introduction
1.1 Related work
1.2 Outline of the results
1.3 Notation and terminology
2 Homogeneity in Discrete Time
2.1 Generalized dilations and homogeneity
2.2 Examples of gilations
2.3 Homogeneous systems and optimization
2.4 Numerical calculations
2.5 A numerical example: discretized cubic integrator
2.6 Summary
2.7 Notes and references
3 Regulating a class of homogeneous systems
3.1 Regulation in continuous time
3.1.1 On robustness
3.2 Chained systems and systems in power form
3.2.1 Simulations
3.3 Summary
3.4 Notes and references
4 Homogeneity in continuous time
4.1 A condition on the righth and side
4.2 Homogeneity and uniqueness of solutions
4.3 Homogeneity and monotonicity
4.4 Implications when correlator is state independent
4.5 Summary
5 Switched homogeneous systems
5.1 Constructing a feedback
5.1.1 On robustness
5.1.2 Linear systems and convexity
5.2 A converse Lyapunov result
5.3 A numerical example
5.4 Summary
5.5 Notes and references
6 Conclusion
Bibliography
A On convergence of (2.19)
編輯手記
1.1 Related work
1.2 Outline of the results
1.3 Notation and terminology
2 Homogeneity in Discrete Time
2.1 Generalized dilations and homogeneity
2.2 Examples of gilations
2.3 Homogeneous systems and optimization
2.4 Numerical calculations
2.5 A numerical example: discretized cubic integrator
2.6 Summary
2.7 Notes and references
3 Regulating a class of homogeneous systems
3.1 Regulation in continuous time
3.1.1 On robustness
3.2 Chained systems and systems in power form
3.2.1 Simulations
3.3 Summary
3.4 Notes and references
4 Homogeneity in continuous time
4.1 A condition on the righth and side
4.2 Homogeneity and uniqueness of solutions
4.3 Homogeneity and monotonicity
4.4 Implications when correlator is state independent
4.5 Summary
5 Switched homogeneous systems
5.1 Constructing a feedback
5.1.1 On robustness
5.1.2 Linear systems and convexity
5.2 A converse Lyapunov result
5.3 A numerical example
5.4 Summary
5.5 Notes and references
6 Conclusion
Bibliography
A On convergence of (2.19)
編輯手記
展開全部
書友推薦
- >
史學(xué)評(píng)論
- >
羅曼·羅蘭讀書隨筆-精裝
- >
煙與鏡
- >
山海經(jīng)
- >
回憶愛瑪儂
- >
新文學(xué)天穹兩巨星--魯迅與胡適/紅燭學(xué)術(shù)叢書(紅燭學(xué)術(shù)叢書)
- >
名家?guī)阕x魯迅:故事新編
- >
朝聞道
本類暢銷