中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
Bayesian data analysis

包郵 Bayesian data analysis

出版社:世界圖書出版公司出版時間:2020-06-01
開本: 26cm 頁數: 667頁
本類榜單:自然科學銷量榜
中 圖 價:¥150.4(8.9折) 定價  ¥169.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

Bayesian data analysis 版權信息

  • ISBN:9787519261818
  • 條形碼:9787519261818 ; 978-7-5192-6181-8
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>>

Bayesian data analysis 內容簡介

這本書獲得了2016年德格魯特獎(De Groot Prize),兩年一次的統計教科書獎。 這是第三版,這部教材已經相當經典了。是一部被廣泛認可的關于貝葉斯方法的*領先的讀本,因為其易于理解、分析數據和解決研究問題的實際操作性強而廣受贊譽。貝葉斯數據分析,第三版應用*新的貝葉斯方法,繼續采用實用的方法來分析數據。作者均是統計界的領導人物,在呈現更高等的方法之前,從數據分析的觀點引進基本概念。整本書從始至終,從實際應用和研究中提取的大量的練習實例強調了貝葉斯推理在實踐中的應用。

Bayesian data analysis 目錄

Preface
Part I: Fundamentals of Bayesian Inference
1 Probability and inference
I.I The three steps of Bayesian data analysis
1.2 General notation for statistical inference
1.3 Bayesian inference
1.4 Discrete examples: genetics and spell checking
1.5 Probability as a measure of uncertainty
1.6 Example: probabilities from football point spreads
1.7 Example: calibration for record linkage
1.8 Some useful results from probability theory
1.9 Computation and software
I.I0 Bayesian inference in applied statistics
i.Ii Bibliographic note
1.12 Exercises
2 Single-parameter models
2.1 Estimating a probability from binomial data
2.2 Posterior as compromise between data and prior information
2.3 Summarizing posterior inference
2.4 Informative prior distributions
2.5 Normal distribution with known variance
2.6 Other standard single-parameter models
2.7 Example: informative prior distribution for cancer rates
2.8 Noninformative prior distributions
2.9 Weakly informative prior distributions
2.10 Bibliographic note
2.11 Exercises
3 Introduction to multiparameter models
3.1 Averaging over 'nuisance parameters'
3.2 Normal data with a noninformative prior distribution
3.3 Normal data with a conjugate prior distribution
3.4 Multinomial model for categorical data
3.5 Multivariate normal model with known variance
3.6 Multivariate normal with unknown mean and variance
3.7 Example: analysis of a bioassay experiment
3.8 Summary of elementary modeling and computation
3.9 Bibliographic note
3.10 Exercises
4 Asymptotics and connections to non-Bayesian approaches
4.1 Normal approximations to the posterior distribution
4.2 Large-sample theory
4.3 Counterexamples to the theorems
4.4 Frequency evaluations of Bayesian inferences
4.5 Bayesian interpretations of other statistical methods
4.6 Bibliographic note
4.7 Exercises
5 Hierarchical models
5.1 Constructing a parameterized prior distribution
5.2 Exchangeability and hierarchical models
5.3 Bayesian analysis of conjugate hierarchical models
5.4 Normal model with exchangeable parameters
5.5 Example: parallel experiments in eight schools
5.6 Hierarchical modeling applied to a meta-analysis
5.7 Weakly informative priors for variance parameters
5.8 Bibliographic note
5.9 Exercises

Part II: Fundamentals of Bayesian Data Analysis
6 Model checking
6.1 The place of model checking in applied Bayesian statistics
6.2 Do the inferences from the model make sense?
6.3 Posterior predictive checking
6.4 Graphical posterior predictive checks
6.5 Model checking for the educational testing example
6.6 Bibliographic note
6.7 Exercises
? Evaluating, comparing, and expanding models
7.1 Measures of predictive accuracy
7.2 Information criteria and cross-validation
7.3 Model comparison based on predictive performance
7.4 Model comparison using Bayes factors
7.5 Continuous model expansion
7.6 Implicit assumptions and model expansion: an example
7.7 Bibliographic note
7.8 Exercises
8 Modeling accounting for data collection
8.1 Bayesian inference requires a model for data collection
8.2 Data-collection models and ignorability
8.3 Sample surveys
8.4 Designed experiments
8.5 Sensitivity and the role of randomization
8.6 Observational studies
8.7 Censoring and truncation
8.8 Discussion
8.9 Bibliographic note
8.10 Exercises
9 Decision analysis
9.1 Bayesian decision theory in different contexts
9.2 Using regression predictions: survey incentives
9.3 Multistage decision making: medical screening
9.4 Hierarchical decision analysis for home radon
9.5 Personal vs. institutional decision analysis
9.6 Bibliographic note
9.7 Exercises

Part III: Advanced Computation
10 Introduction to Bayesian computation
10.1 Numerical integration
10.2 Distributional approximations
10.3 Direct simulation and rejection sampling
10.4 Importance sampling
10.5 How many simulation draws are needed?
10.6 Computing environments
10.7 Debugging Bayesian computing
10.8 Bibliographic note
10.9 Exercises
11 Basics of Markov chain simulation
11.1 Gibbs sampler
11.2 Metropolis and Metropolis-Hastings algorithms
11.3 Using Gibbs and Metropolis as building blocks
11.4 Inference and assessing convergence
11.5 Effective number of simulation draws
11.6 Example: hierarchical normal model
11.7 Bibliographic note
11.8 Exercises
12 Computationally efficient Markov chain simulation
12.1 Efficient Gibbs samplers
12.2 Efficient Metropolis jumping rules
12.3 Further extensions to Gibbs and Metropolis
12.4 Hamiltonian Monte Carlo
12.5 Hamiltonian Monte Carlo for a hierarchical model
12.6 Stan: developing a computing environment
12.7 Bibliographic note
12.8 Exercises
13 Modal and distributional approximations
13.1 Finding posterior modes
13.2 Boundary-avoiding priors for modal summaries
13.3 Normal and related mixture approximations
13.4 Finding marginal posterior modes using EM
13.5 Conditional and marginal posterior approximations
13.6 Example: hierarchical normal model (continued)
13.7 Variational inference
13.8 Expectation propagation
13.9 Other approximations
13.10 Unknown normalizing factors
13.11 Bibliographic note
13.12 Exercises

Part IV: Regression Models
14 Introduction to regression models
14.1 Conditional modeling
14.2 Bayesian analysis of classical regression
14.3 Regression for causal inference: incumbency and voting
14.4 Goals of regression analysis
14.5 Assembling the matrix of explanatory variables
14.6 Regularization and dimension reduction
14.7 Unequal variances and correlations
14.8 Including numerical prior information
14.9 Bibliographic note
14.10 Exercises
15 Hierarchical linear models
15.1 Regression coefficients exchangeable in batches
15.2 Example: forecasting U.S. presidential elections
15.3 Interpreting a normal prior distribution as extra data
15.4 Varying intercepts and slopes
15.5 Computation: batching and transformation
15.6 Analysis of variance and the batching of coefficients
15.7 Hierarchical models for batches of variance components
15.8 Bibliographic note
15.9 Exercises
16 Generalized linear models
16.1 Standard generalized linear model likelihoods
16.2 Working with generalized linear models
16.3 Weakly informative priors for logistic regression
16.4 Overdispersed Poisson regression for police stops
16.5 State-level opinons from national polls
16.6 Models for multivariate and multinomial responses
16.7 Loglinear models for multivariate discrete data
16.8 Bibliographic note
16.9 Exercises
17 Models for robust inference
17.1 Aspects of robustness
17.2 Overdispersed versions of standard models
17.3 Posterior inference and computation
17.4 Robust inference for the eight schools
17.5 Robust regression using t-distributed errors
17.6 Bibliographic note
17.7 Exercises
18 Models for missing data
18.1 Notation
18.2 Multiple imputation
18.3 Missing data in the multivariate normal and t models
18.4 Example: multiple imputation for a series of polls
18.5 Missing values with counted data
18.6 Example: an opinion poll in Slovenia
18.7 Bibliographic note
18.8 Exercises

Part V: Nonlinear and Nonparametric Models
19 Parametric nonlinear models
19.1 Example: serial dilution assay
19.2 Example: population toxicokinetics
19.3 Bibliographic note
19.4 Exercises
20 Basis function models
20.1 Splines and weighted sums of basis functions
20.2 Basis selection and shrinkage of coefficients
20.3 Non-normal models and regression surfaces
20.4 Bibliographic note
20.5 Exercises
21 Gaussian process models
21.1 Gaussian process regression
21.2 Example: birthdays and birthdates
21.3 Latent Gaussian process models
21.4 Functional data analysis
21.5 Density estimation and regression
21.6 Bibliographic note
21.7 Exercises
22 Finite mixture models
22.1 Setting up and interpreting mixture models
22.2 Example: reaction times and schizophrenia
22.3 Label switching and posterior computation
22.4 Unspecified number of mixture components
22.5 Mixture models for classification and regression
22.6 Bibliographic note
22.7 Exercises
23 Dirichlet process models
23.1 Bayesian histograms
23.2 Dirichlet process prior distributions
23.3 Dirichlet process mixtures
23.4 Beyond density estimation
23.5 Hierarchical dependence
23.6 Density regression
23.7 Bibliographic note
23.8 Exercises

Appendixes
A Standard probability distributions
A.1 Continuous distributions
A.2 Discrete distributions
A.3 Bibliographic note
B Outline of proofs of limit theorems
B.1 Bibliographic note
C Computation in R and Stan
C.1 Getting started with R and Stan
C.2 Fitting a hierarchical model in Stan
C.3 Direct simulation, Gibbs, and Metropolis in R
C.4 Programming Hamiltonian Monte Carlo in R
C.5 Further comments on computation
C.6 Bibliographic note
References
Author Index
Subject Index
展開全部

Bayesian data analysis 作者簡介

Andrew Gelman是哥倫比亞大學統計學院的教授,應用統計學中心主任。他曾獲得美國統計協會頒發的杰出統計應用獎、《美國政治科學評論》發表的最佳文章獎,以及統計學會主席理事會頒發的40歲以下人士杰出貢獻獎。他的著作包括貝葉斯數據分析(與約翰·卡林、哈爾·斯特恩、大衛·鄧森、阿基·維塔里和唐·魯賓合著)、教學統計學等。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 国产液相色谱仪-超高效液相色谱仪厂家-上海伍丰科学仪器有限公司 | 微妙网,专业的动画师、特效师、CG模型设计师网站! - wmiao.com 超声波电磁流量计-液位计-孔板流量计-料位计-江苏信仪自动化仪表有限公司 | 精准猎取科技资讯,高效阅读科技新闻_科技猎| 背压阀|减压器|不锈钢减压器|减压阀|卫生级背压阀|单向阀|背压阀厂家-上海沃原自控阀门有限公司 本安接线盒-本安电路用接线盒-本安分线盒-矿用电话接线盒-JHH生产厂家-宁波龙亿电子科技有限公司 | 特种阀门-调节阀门-高温熔盐阀-镍合金截止阀-钛阀门-高温阀门-高性能蝶阀-蒙乃尔合金阀门-福建捷斯特阀门制造有限公司 | 广东高华家具-公寓床|学生宿舍双层铁床厂家【质保十年】 | 工业PH计|工业ph酸度计|在线PH计价格-合肥卓尔仪器仪表有限公司 济南画室培训-美术高考培训-山东艺霖艺术培训画室 | RS系列电阻器,RK_RJ启动调整电阻器,RQ_RZ电阻器-上海永上电器有限公司 | RTO换向阀_VOC高温阀门_加热炉切断阀_双偏心软密封蝶阀_煤气蝶阀_提升阀-湖北霍科德阀门有限公司 | 防锈油-助焊剂-光学玻璃清洗剂-贝塔防锈油生产厂家 | 庭院灯_太阳能景观灯_草坪灯厂家_仿古壁灯-重庆恒投科技 | 打包钢带,铁皮打包带,烤蓝打包带-高密市金和金属制品厂 | 天津蒸汽/热水锅炉-电锅炉安装维修直销厂家-天津鑫淼暖通设备有限公司 | 无机纤维喷涂棉-喷涂棉施工工程-山东华泉建筑工程有限公司▲ | 济南网站建设_济南网站制作_济南网站设计_济南网站建设公司_富库网络旗下模易宝_模板建站 | 云南成人高考网| 有声小说,听书,听小说资源库-听世界网 | 厂房出租-厂房规划-食品技术-厂房设计-厂房装修-建筑施工-设备供应-设备求购-龙爪豆食品行业平台 | 智能电表|预付费ic卡水电表|nb智能无线远传载波电表-福建百悦信息科技有限公司 | 扬子叉车厂家_升降平台_电动搬运车|堆高车-扬子仓储叉车官网 | 金刚网,金刚网窗纱,不锈钢网,金刚网厂家- 河北萨邦丝网制品有限公司 | 比亚迪叉车-比亚迪电动叉车堆垛车托盘车仓储叉车价格多少钱报价 磁力去毛刺机_去毛刺磁力抛光机_磁力光饰机_磁力滚抛机_精密金属零件去毛刺机厂家-冠古科技 | 苏州防水公司_厂房屋面外墙防水_地下室卫生间防水堵漏-苏州伊诺尔防水工程有限公司 | 青岛空压机,青岛空压机维修/保养,青岛空压机销售/出租公司,青岛空压机厂家电话 | 真空干燥烘箱_鼓风干燥箱 _高低温恒温恒湿试验箱_光照二氧化碳恒温培养箱-上海航佩仪器 | 精密五金冲压件_深圳五金冲压厂_钣金加工厂_五金模具加工-诚瑞丰科技股份有限公司 | 冷凝水循环试验箱-冷凝水试验箱-可编程高低温试验箱厂家-上海巨为(www.juweigroup.com) | 深圳品牌设计公司-LOGO设计公司-VI设计公司-未壳创意 | 防水试验机_防水测试设备_防水试验装置_淋雨试验箱-广州岳信试验设备有限公司 | 锯边机,自动锯边机,双面涂胶机-建业顺达机械有限公司 | 全球化工设备网—化工设备,化工机械,制药设备,环保设备的专业网络市场。 | 微量水分测定仪_厂家_卡尔费休微量水分测定仪-淄博库仑 | 网架支座@球铰支座@钢结构支座@成品支座厂家@万向滑动支座_桥兴工程橡胶有限公司 | 超声波破碎仪-均质乳化机(供应杭州,上海,北京,广州,深圳,成都等地)-上海沪析实业有限公司 | 蒸汽热收缩机_蒸汽发生器_塑封机_包膜机_封切收缩机_热收缩包装机_真空机_全自动打包机_捆扎机_封箱机-东莞市中堡智能科技有限公司 | 网带通过式抛丸机,,网带式打砂机,吊钩式,抛丸机,中山抛丸机生产厂家,江门抛丸机,佛山吊钩式,东莞抛丸机,中山市泰达自动化设备有限公司 | 山东led显示屏,山东led全彩显示屏,山东LED小间距屏,临沂全彩电子屏-山东亚泰视讯传媒有限公司 | 无负压供水设备,消防稳压供水设备-淄博创辉供水设备有限公司 | 塑钢件_塑钢门窗配件_塑钢配件厂家-文安县启泰金属制品有限公司 深圳南财多媒体有限公司介绍 | 厂房出租-厂房规划-食品技术-厂房设计-厂房装修-建筑施工-设备供应-设备求购-龙爪豆食品行业平台 | EPDM密封胶条-EPDM密封垫片-EPDM生产厂家 |