掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
泛函分析導論-(第二版) 版權信息
- ISBN:9787030614766
- 條形碼:9787030614766 ; 978-7-03-061476-6
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
泛函分析導論-(第二版) 內容簡介
本教材是學習泛函分析課程的一本入門教材,是針對中國學生編寫的一本英文教材,在選材上吸收了國外的優秀本科生教材的一些精華;在編寫上考慮了與中國學生所具備的基礎知識銜接性,在充分地反映泛函分析中的核心內容的前提下,突出重點;在內容的處理上,體現了由淺入深,循序漸進的原則,用大量的例題對度量空間、賦范線性空間、線性算子與線性泛函、內積空間與各種算子及它們的譜分解的概念、關系、性質進行了演繹、推導與論證,
泛函分析導論-(第二版) 目錄
Contents
Preface i
Introduction iii
List of Symbols vii
Chapter 1 Metric Spaces 1
1.1 Preliminaries 1
1.2 Definitions and Examples 6
1.3 Convergence of Sequences in Metric Spaces 12
1.4 Sets in a Metric Space 17
1.5 Complete Metric Spaces 25
1.6 Continuous Mappings on Metric Spaces 33
1.7 Compact Metric Spaces 38
1.8 Banach Fixed Point Theorem 46
Chapter 2 Normed Linear Spaces. Banach Spaces 57
2.1 Review of Linear Spaces 57
2.2 Norms in Linear Spaces 59
2.3 Examples of Normed Linear Spaces 65
2.4 Finite-Dimensional Normed Linear Spaces 77
2.5 Linear Subspaces of Normed Linear Spaces 83
2.6 Quotient Spaces 90
2.7 Weierstrass Approximation Theorem 94
Chapter 3 Inner Product Spaces. Hilbert Spaces 101
3.1 Inner Products 101
3.2 Orthogonality 114
3.3 Orthonormal Systems 123
3.4 Fourier Series 138
Chapter 4 Linear Operators. Fundamental Theorems 145
4.1 Bounded Linear Operators and Functionals 145
4.2 Spaces of Bounded Linear Operators and Dual Spaces 162
4.3 Banach-Steinhaus Theorem 173
4.4 Inverses of Operators. Banach's Theorem 180
4.5 Hahn-Banach Theorem 190
4.6 Strong and Weak Convergence 203
Chapter 5 Linear Operators on Hilbert Spaces 215
5.1 Adjoint Operators. Lax-Milgram Theorem 215
5.2 Spectral Theorem for Self-adjoint Compact Operators 229
Chapter 6 Differential Calculus in Normed Linear Spaces 257
6.1 Gateaux and Frechet Derivatives 257
6.2 Taylor's Formula, Implicit and Inverse Function Theorems 270
Bibliography 279
Index 283
Preface i
Introduction iii
List of Symbols vii
Chapter 1 Metric Spaces 1
1.1 Preliminaries 1
1.2 Definitions and Examples 6
1.3 Convergence of Sequences in Metric Spaces 12
1.4 Sets in a Metric Space 17
1.5 Complete Metric Spaces 25
1.6 Continuous Mappings on Metric Spaces 33
1.7 Compact Metric Spaces 38
1.8 Banach Fixed Point Theorem 46
Chapter 2 Normed Linear Spaces. Banach Spaces 57
2.1 Review of Linear Spaces 57
2.2 Norms in Linear Spaces 59
2.3 Examples of Normed Linear Spaces 65
2.4 Finite-Dimensional Normed Linear Spaces 77
2.5 Linear Subspaces of Normed Linear Spaces 83
2.6 Quotient Spaces 90
2.7 Weierstrass Approximation Theorem 94
Chapter 3 Inner Product Spaces. Hilbert Spaces 101
3.1 Inner Products 101
3.2 Orthogonality 114
3.3 Orthonormal Systems 123
3.4 Fourier Series 138
Chapter 4 Linear Operators. Fundamental Theorems 145
4.1 Bounded Linear Operators and Functionals 145
4.2 Spaces of Bounded Linear Operators and Dual Spaces 162
4.3 Banach-Steinhaus Theorem 173
4.4 Inverses of Operators. Banach's Theorem 180
4.5 Hahn-Banach Theorem 190
4.6 Strong and Weak Convergence 203
Chapter 5 Linear Operators on Hilbert Spaces 215
5.1 Adjoint Operators. Lax-Milgram Theorem 215
5.2 Spectral Theorem for Self-adjoint Compact Operators 229
Chapter 6 Differential Calculus in Normed Linear Spaces 257
6.1 Gateaux and Frechet Derivatives 257
6.2 Taylor's Formula, Implicit and Inverse Function Theorems 270
Bibliography 279
Index 283
展開全部
書友推薦
- >
名家帶你讀魯迅:朝花夕拾
- >
人文閱讀與收藏·良友文學叢書:一天的工作
- >
隨園食單
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
上帝之肋:男人的真實旅程
- >
小考拉的故事-套裝共3冊
- >
山海經
- >
推拿
本類暢銷