中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
闖進數學世界――探秘歷史名題
-
>
中醫基礎理論
-
>
當代中國政府與政治(新編21世紀公共管理系列教材)
-
>
高校軍事課教程
-
>
思想道德與法治(2021年版)
-
>
毛澤東思想和中國特色社會主義理論體系概論(2021年版)
-
>
中醫內科學·全國中醫藥行業高等教育“十四五”規劃教材
經濟科學譯叢經濟數學(第3版)/經濟科學譯叢 版權信息
- ISBN:9787300216744
- 條形碼:9787300216744 ; 978-7-300-21674-4
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
經濟科學譯叢經濟數學(第3版)/經濟科學譯叢 內容簡介
本書在不損數學本身的嚴密性和準確性的前提下,打破了經濟學和數學分別教學的常規,將經濟學與數學有機結合在一起,不但清晰地表達了相關的數學主題,而且比較完美地將這些主題與經濟問題相結合,其側重點在于教會學生利用數學知識解決相關的經濟問題。本書第二版也由我社出版,共發行6000冊。
經濟科學譯叢經濟數學(第3版)/經濟科學譯叢 目錄
第Ⅰ篇 引言和基本原理
第1章 引言
1.1 何為經濟模型
1.2 如何利用本書
1.3 結束語
第2章 基本原理回顧
2.1 集合和子集
2.2 數
2.3 n維實數空間的點集合的一些性質
2.4 函數
本章小結
第3章 數列、級數和極限
3.1 數列的定義
3.2 數列的極限
3.3 現值計算
3.4 數列的特征
3.5 級數
本章小結
第Ⅱ篇 單變量微積分和*優化
第4章 函數的連續性
4.1 一元函數的連續性
4.2 連續函數和不連續函數的經濟運用
本章小結
第5章 一元函數的導數和微分
5.1 切線的定義
5.2 導數和微分的定義
5.3 可微的條件
5.4 微分法則
5.5 凹函數和凸函數的高階導數
5.6 泰勒公式和中值定理
本章小結
第6章 一元函數的*優化
6.1 無約束*大*小值的必要條件
6.2 二階條件
6.3 一個區間上的*優化
本章小結
第Ⅲ篇 線性代數
第7章 線性方程組
7.1 求解線性方程組
7.2 n元線性方程組
本章小結
第8章 矩陣
8.1 基本概念
8.2 矩陣的基本運算
8.3 矩陣轉置
8.4 幾種特殊的矩陣
本章小結
第9章 行列式和逆矩陣
9.1 逆矩陣的定義
9.2 3×3矩陣的行列式和逆矩陣
9.3 n×n矩陣的逆矩陣及其性質
9.4 克萊姆法則
本章小結
第10章 線性代數前沿
10.1 向量空間
10.2 特征值問題
10.3 二次型
本章小結
第Ⅳ篇 多元計算
第11章 n個變量函數的計算
11.1 偏微分
11.2 二階偏導數
11.3 一階全微分
11.4 曲率:凹性和凸性
11.5 函數的其他性質和經濟應用
11.6 泰勒級數展開
本章小結
第12章 n個變量函數的*優化
12.1 一階條件
12.2 二階條件
12.3 對變量的直接約束
本章小結
第13章 約束*優化
13.1 約束問題和求解方法
13.2 有約束條件的*優化的二階條件
13.3 存在性、唯一性和解的刻畫
本章小結
第14章 比較靜態
14.1 比較靜態分析介紹
14.2 一般性的比較靜態分析
14.3 包絡定理
本章小結
第15章 凹規劃和庫恩塔克條件
15.1 凹規劃問題
15.2 多個變量和約束
本章小結
第Ⅴ篇 積分和動態方法
第16章 積分
16.1 不定積分
16.2 黎曼(定)積分
16.3 積分的性質
16.4 廣義積分
16.5 積分方法
本章小結
第17章 動態經濟數學
17.1 動態模型
本章小結
第18章 一階線性差分方程
18.1 一階線性自治差分方程
18.2 一般一階線性差分方程
本章小結
第19章 一階非線性差分方程
19.1 相圖和定性分析
19.2 循環和混沌
本章小結
第20章 二階線性差分方程
20.1 二階線性自治差分方程
20.2 可變項二階線性差分方程
本章小結
第21章 一階線性微分方程
21.1 自治方程
21.2 非自治方程
本章小結
第22章 一階非線性微分方程
22.1 自治方程和定性分析
22.2 兩種特殊形式的一階非線性微分方程
本章小結
第23章 二階線性微分方程
23.1 二階線性自治微分方程
23.2 可變項二階線性微分方程
本章小結
第24章 微分和差分方程組
24.1 線性微分方程組
24.2 穩定性分析和線性相圖
24.3 線性差分方程組
本章小結
第25章 *優控制理論
25.1 *大值原理
25.2 貼現*優化問題
25.3 關于x(T)的其他邊界條件
25.4 無窮時間水平問題
25.5 對控制變量的約束
25.6 自由終結時間問題(T不固定)
本章小結
答案
術語表
第1章 引言
1.1 何為經濟模型
1.2 如何利用本書
1.3 結束語
第2章 基本原理回顧
2.1 集合和子集
2.2 數
2.3 n維實數空間的點集合的一些性質
2.4 函數
本章小結
第3章 數列、級數和極限
3.1 數列的定義
3.2 數列的極限
3.3 現值計算
3.4 數列的特征
3.5 級數
本章小結
第Ⅱ篇 單變量微積分和*優化
第4章 函數的連續性
4.1 一元函數的連續性
4.2 連續函數和不連續函數的經濟運用
本章小結
第5章 一元函數的導數和微分
5.1 切線的定義
5.2 導數和微分的定義
5.3 可微的條件
5.4 微分法則
5.5 凹函數和凸函數的高階導數
5.6 泰勒公式和中值定理
本章小結
第6章 一元函數的*優化
6.1 無約束*大*小值的必要條件
6.2 二階條件
6.3 一個區間上的*優化
本章小結
第Ⅲ篇 線性代數
第7章 線性方程組
7.1 求解線性方程組
7.2 n元線性方程組
本章小結
第8章 矩陣
8.1 基本概念
8.2 矩陣的基本運算
8.3 矩陣轉置
8.4 幾種特殊的矩陣
本章小結
第9章 行列式和逆矩陣
9.1 逆矩陣的定義
9.2 3×3矩陣的行列式和逆矩陣
9.3 n×n矩陣的逆矩陣及其性質
9.4 克萊姆法則
本章小結
第10章 線性代數前沿
10.1 向量空間
10.2 特征值問題
10.3 二次型
本章小結
第Ⅳ篇 多元計算
第11章 n個變量函數的計算
11.1 偏微分
11.2 二階偏導數
11.3 一階全微分
11.4 曲率:凹性和凸性
11.5 函數的其他性質和經濟應用
11.6 泰勒級數展開
本章小結
第12章 n個變量函數的*優化
12.1 一階條件
12.2 二階條件
12.3 對變量的直接約束
本章小結
第13章 約束*優化
13.1 約束問題和求解方法
13.2 有約束條件的*優化的二階條件
13.3 存在性、唯一性和解的刻畫
本章小結
第14章 比較靜態
14.1 比較靜態分析介紹
14.2 一般性的比較靜態分析
14.3 包絡定理
本章小結
第15章 凹規劃和庫恩塔克條件
15.1 凹規劃問題
15.2 多個變量和約束
本章小結
第Ⅴ篇 積分和動態方法
第16章 積分
16.1 不定積分
16.2 黎曼(定)積分
16.3 積分的性質
16.4 廣義積分
16.5 積分方法
本章小結
第17章 動態經濟數學
17.1 動態模型
本章小結
第18章 一階線性差分方程
18.1 一階線性自治差分方程
18.2 一般一階線性差分方程
本章小結
第19章 一階非線性差分方程
19.1 相圖和定性分析
19.2 循環和混沌
本章小結
第20章 二階線性差分方程
20.1 二階線性自治差分方程
20.2 可變項二階線性差分方程
本章小結
第21章 一階線性微分方程
21.1 自治方程
21.2 非自治方程
本章小結
第22章 一階非線性微分方程
22.1 自治方程和定性分析
22.2 兩種特殊形式的一階非線性微分方程
本章小結
第23章 二階線性微分方程
23.1 二階線性自治微分方程
23.2 可變項二階線性微分方程
本章小結
第24章 微分和差分方程組
24.1 線性微分方程組
24.2 穩定性分析和線性相圖
24.3 線性差分方程組
本章小結
第25章 *優控制理論
25.1 *大值原理
25.2 貼現*優化問題
25.3 關于x(T)的其他邊界條件
25.4 無窮時間水平問題
25.5 對控制變量的約束
25.6 自由終結時間問題(T不固定)
本章小結
答案
術語表
展開全部
經濟科學譯叢經濟數學(第3版)/經濟科學譯叢 作者簡介
邁克爾·霍伊,圭爾夫大學經濟學院的教授。約翰·利弗諾是圭爾夫大學經濟學院的教授和院長。克里斯·麥克納是圭爾夫大學經濟學院的教授。雷·里斯是慕尼黑大學經濟研究中心(CES)的名譽經濟學教授。薩納西斯·斯坦格斯是圭爾夫大學經濟學院的教授。
書友推薦
- >
苦雨齋序跋文-周作人自編集
- >
朝聞道
- >
有舍有得是人生
- >
巴金-再思錄
- >
伊索寓言-世界文學名著典藏-全譯本
- >
經典常談
- >
史學評論
- >
唐代進士錄
本類暢銷