中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊

包郵 高等數學:上:Ⅰ

出版社:北京郵電大學出版社出版時間:2017-09-01
開本: 26cm 頁數: 303頁
本類榜單:教材銷量榜
中 圖 價:¥37.8(8.2折) 定價  ¥46.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

高等數學:上:Ⅰ 版權信息

  • ISBN:9787563552726
  • 條形碼:9787563552726 ; 978-7-5635-5272-6
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

高等數學:上:Ⅰ 本書特色

本書是根據國家教育部非數學專業數學基礎課教學指導分委員會制定的工科類本科數學基礎課程教學基本要求編寫的全英文教材,全書分為上、下兩冊,此為上冊,主要包括函數與極限,一元函數微積分及其應用和微分方程三部分。本書對基本概念的敘述清晰準確,對基本理論的論述簡明易懂,例題習題的選配典型多樣,強調基本運算能力的培養及理論的實際應用。本書可作為高等理工科院校非數學類專業本科生的教材,也可供其他專業選用和社會讀者閱讀。
The aim of this book is to meet the requirement of bilingual teaching of advanced mathematics.This book is divided into two volumes, and the first volume contains functions and limits, calculus of functions of a single variable and differential equations. The selection of the contents is in accordance with the fundamental requirements of teaching issued by the Ministry of Education of China and based on the property of our university. This book may be used as a textbook for undergraduate students in the science and engineering schools whose majors are not mathematics, and may also be suitable to the readers at the same level.

高等數學:上:Ⅰ 內容簡介

本書是根據國家教育部非數學專業數學基礎課教學指導分委員會制定的工科類本科數學基礎課程教學基本要求編寫的全英文教材,全書分為上、下兩冊,此為上冊,主要包括函數與極限,一元函數微積分及其應用和微分方程三部分。本書對基本概念的敘述清晰準確,對基本理論的論述簡明易懂,例題習題的選配典型多樣,強調基本運算能力的培養及理論的實際應用。本書可作為高等理工科院校非數學類專業本科生的教材,也可供其他專業選用和社會讀者閱讀。 The aim of this book is to meet the requirement of bilingual teaching of advanced mathematics.This book is divided into two volumes, and the first volume contains functions and limits, calculus of functions of a single variable and differential equations. The selection of the contents is in accordance with the fundamental requirements of teaching issued by the Ministry of Education of China and based on the property of our university. This book may be used as a textbook for undergraduate students in the science and engineering schools whose majors are not mathematics, and may also be suitable to the readers at the same level.

高等數學:上:Ⅰ 目錄

Contents

Chapter 1 Fundamental Knowledge of Calculus1

1.1 Mappings and Functions1

1.1.1 Sets and Their Operations1

1.1.2 Mappings and Functions6

1.1.3 Elementary Properties of Functions11

1.1.4 Composite Functions and Inverse Functions14

1.1.5 Basic Elementary Functions and Elementary Functions16

Exercises 1.1 A23

Exercises 1.1 B25

1.2 Limits of Sequences26

1.2.1 The Definition of Limit of a Sequence26

1.2.2 Properties of Limits of Sequences31

1.2.3 Operations of Limits of Sequences35

1.2.4 Some Criteria for Existence of the Limit of a Sequence38

Exercises 1.2 A44

Exercises 1.2 B46

1.3 The Limit of a Function46

1.3.1 Concept of the Limit of a Function47

1.3.2 Properties and Operations of Limits for Functions53

1.3.3 Two Important Limits of Functions58

Exercises 1.3 A61

Exercises 1.3 B63

1.4 Infinitesimal and Infinite Quantities63

1.4.1 Infinitesimal Quantities63

1.4.2 Infinite Quantities65

1.4.3 The Order of Infinitesimals and Infinite Quantities67

Exercises 1.4 A71

Exercises 1.4 B73

1.5 Continuous Functions73

1.5.1 Continuity of Functions74

1.5.2 Properties and Operations of Continuous Functions76

1.5.3 Continuity of Elementary Functions78

1.5.4 Discontinuous Points and Their Classification80

1.5.5 Properties of Continuous Functions on a Closed Interval83

Exercises 1.5 A87

Exercises 1.5 B89

Chapter 2 Derivative and Differential91

2.1 Concept of Derivatives91

2.1.1 Introductory Examples 91

2.1.2 Definition of Derivatives92

2.1.3 Geometric Meaning of the Derivative96

2.1.4 Relationship between Derivability and Continuity96

Exercises 2.1 A98

Exercises 2.1 B99

2.2 Rules of Finding Derivatives99

2.2.1 Derivation Rules of Rational Operations100

2.2.2 Derivation Rules of Composite Functions101

2.2.3 Derivative of Inverse Functions103

2.2.4 Derivation Formulas of Fundamental Elementary Functions104

Exercises 2.2 A105

Exercises 2.2 B107

2.3 Higher Order Derivatives107

Exercises 2.3 A110

Exercises 2.3 B111

2.4 Derivation of Implicit Functions and Parametric Equations,
Related Rates111

2.4.1 Derivation of Implicit Functions111

2.4.2 Derivation of Parametric Equations114

2.4.3 Related Rates118

Exercises 2.4 A120

Exercises 2.4 B122

2.5 Differential of the Function123

2.5.1 Concept of the Differential123

2.5.2 Geometric Meaning of the Differential125

2.5.3 Differential Rules of Elementary Functions126

2.5.4 Differential in Linear Approximate Computation127

Exercises 2.5128

Chapter 3 The Mean Value Theorem and Applications of Derivatives130

3.1 The Mean Value Theorem130

3.1.1 Rolle's Theorem 130

3.1.2 Lagrange's Theorem132

3.1.3 Cauchy's Theorem135

Exercises 3.1 A137

Exercises 3.1 B138

3.2 L'Hospital's Rule138

Exercises 3.2 A144

Exercises 3.2 B145

3.3 Taylor's Theorem145

3.3.1 Taylor's Theorem145

3.3.2 Applications of Taylor's Theorem149

Exercises 3.3 A150

Exercises 3.3 B151

3.4 Monotonicity, Extreme Values, Global Maxima and Minima of Functions151

3.4.1 Monotonicity of Functions151

3.4.2 Extreme Values153

3.4.3 Global Maxima and Minima and Its Application156

Exercises 3.4 A158

Exercises 3.4 B160

3.5 Convexity of Functions, Inflections160

Exercises 3.5 A165

Exercises 3.5 B166

3.6 Asymptotes and Graphing Functions166

Exercises 3.6170

Chapter 4 Indefinite Integrals172

4.1 Concepts and Properties of Indefinite Integrals172

4.1.1 Antiderivatives and Indefinite Integrals172

4.1.2 Formulas for Indefinite Integrals174

4.1.3 Operation Rules of Indefinite Integrals175

Exercises 4.1 A176

Exercises 4.1 B177

4.2 Integration by Substitution177

4.2.1 Integration by the First Substitution177

4.2.2 Integration by the Second Substitution181

Exercises 4.2 A184

Exercises 4.2 B186

4.3 Integration by Parts186

Exercises 4.3 A193

Exercises 4.3 B194

4.4 Integration of Rational Functions194

4.4.1 Rational Functions and Partial Fractions194

4.4.2 Integration of Rational Fractions197

4.4.3 Antiderivatives Not Expressed by Elementary Functions201

Exercises 4.4201

Chapter 5 Definite Integrals202

5.1 Concepts and Properties of Definite Integrals202

5.1.1 Instances of Definite Integral Problems202

5.1.2 The Definition of the Definite Integral205

5.1.3 Properties of Definite Integrals208

Exercises 5.1 A213

Exercises 5.1 B214

5.2 The Fundamental Theorems of Calculus215

5.2.1 Fundamental Theorems of Calculus215

5.2.2 NewtonLeibniz Formula for Evaluation of Definite Integrals217

Exercises 5.2 A219

Exercises 5.2 B221

5.3 Integration by Substitution and by Parts in Definite Integrals222

5.3.1 Substitution in Definite Integrals222

5.3.2 Integration by Parts in Definite Integrals225

Exercises 5.3 A226

Exercises 5.3 B228

5.4 Improper Integral229

5.4.1 Integration on an Infinite Interval229

5.4.2 Improper Integrals with Infinite Discontinuities232

Exercises 5.4 A235

Exercises 5.4 B236

5.5 Applications of Definite Integrals237

5.5.1 Method of Setting up Elements of Integration237

5.5.2 The Area of a Plane Region239

5.5.3 The Arc Length of Plane Curves243

5.5.4 The Volume of a Solid by Slicing and Rotation about an Axis 247

5.5.5 Applications of Definite Integral in Physics249

Exercises 5.5 A252

Exercises 5.5 B254

Chapter 6 Differential Equations256

6.1 Basic Concepts of Differential Equations256

6.1.1 Examples of Differential Equations256

6.1.2 Basic Concepts258

Exercises 6.1259

6.2 FirstOrder Differential Equations260

6.2.1 FirstOrder Separable Differential Equation260

6.2.2 Equations can be Reduced to Equations with Variables Separable262

6.2.3 FirstOrder Linear Equations266

6.2.4 Bernoulli's Equation269

6.2.5 Some Examples that can be Reduced to FirstOrder Linear Equations270

Exercises 6.2272

6.3 Reducible SecondOrder Differential Equations273

Exercises 6.3276

6.4 HigherOrder Linear Differential Equations277

6.4.1 Some Examples of Linear Differential Equation of HigherOrder277

6.4.2 Structure of Solutions of Linear Differential Equations279

Exercises 6.4282

6.5 Linear Equations with Constant Coefficients283

6.5.1 HigherOrder Linear Homogeneous Equations with Constant Coefficients283

6.5.2 HigherOrder Linear Nonhomogeneous Equations with Constant Coefficients287

Exercises 6.5294

6.6 *Euler's Differential Equation295

Exercises 6.6296

6.7 Applications of Differential Equations296

Exercises 6.7301

Bibliography
303
展開全部

高等數學:上:Ⅰ 作者簡介

北京郵電大學高等數學雙語教學組的各位老師均有十幾年豐富的雙語數學教學經驗。

商品評論(0條)
暫無評論……
書友推薦
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 刹车盘机床-刹车盘生产线-龙口亨嘉智能装备 | ph计,实验室ph计,台式ph计,实验室酸度计,台式酸度计 | 集装箱展厅-住人集装箱住宿|建筑|房屋|集装箱售楼处-山东锐嘉科技工程有限公司 | 沙盘模型公司_沙盘模型制作公司_建筑模型公司_工业机械模型制作厂家 | 苏州防水公司_厂房屋面外墙防水_地下室卫生间防水堵漏-苏州伊诺尔防水工程有限公司 | 创富网-B2B网站|供求信息网|b2b平台|专业电子商务网站 | 伺服电机维修、驱动器维修「安川|三菱|松下」伺服维修公司-深圳华创益 | 对辊式破碎机-对辊制砂机-双辊-双齿辊破碎机-巩义市裕顺机械制造有限公司 | 校服厂家,英伦校服定做工厂,园服生产定制厂商-东莞市艾咪天使校服 | 沈阳液压泵_沈阳液压阀_沈阳液压站-沈阳海德太科液压设备有限公司 | 杭州ROHS检测仪-XRF测试仪价格-百科 | 气动隔膜阀_气动隔膜阀厂家_卫生级隔膜阀价格_浙江浙控阀门有限公司 | 锂电叉车,电动叉车_厂家-山东博峻智能科技有限公司 | 风信子发稿-专注为企业提供全球新闻稿发布服务 | 探伤仪,漆膜厚度测试仪,轮胎花纹深度尺厂家-淄博创宇电子 | 烟雾净化器-滤筒除尘器-防爆除尘器-除尘器厂家-东莞执信环保科技有限公司 | 刚性-柔性防水套管-橡胶伸缩接头-波纹管补偿器-启腾供水材料有限公司 | 酒精检测棒,数显温湿度计,酒安酒精测试仪,酒精检测仪,呼气式酒精检测仪-郑州欧诺仪器有限公司 | 【直乐】河北石家庄脊柱侧弯医院_治疗椎间盘突出哪家医院好_骨科脊柱外科专业医院_治疗抽动症/关节病骨伤权威医院|排行-直乐矫形中医医院 | 通信天线厂家_室分八木天线_对数周期天线_天线加工厂_林创天线源头厂家 | 超声波流量计_流量标准装置生产厂家 _河南盛天精密测控 | 手术室净化厂家-成都做医院净化工程的公司-四川华锐-15年特殊科室建设经验 | 空调风机,低噪声离心式通风机,不锈钢防爆风机,前倾皮带传动风机,后倾空调风机-山东捷风风机有限公司 | 求是网 - 思想建党 理论强党| 出国劳务公司_正规派遣公司[严海] | 电气控制系统集成商-PLC控制柜变频控制柜-非标自动化定制-电气控制柜成套-NIDEC CT变频器-威肯自动化控制 | VI设计-LOGO设计公司-品牌设计公司-包装设计公司-导视设计-杭州易象设计 | 哈希PC1R1A,哈希CA9300,哈希SC4500-上海鑫嵩实业有限公司 | 家庭教育吧-在线家庭教育平台,专注青少年家庭教育 | 济南侦探调查-济南调查取证-山东私家侦探-山东白豹调查咨询公司 密集架|电动密集架|移动密集架|黑龙江档案密集架-大量现货厂家销售 | POM塑料_PBT材料「进口」聚甲醛POM杜邦原料、加纤PBT塑料报价格找利隆塑料 | 球盟会·(中国)官方网站| b2b网站大全,b2b网站排名,找b2b网站就上地球网 | H型钢切割机,相贯线切割机,数控钻床,数控平面钻,钢结构设备,槽钢切割机,角钢切割机,翻转机,拼焊矫一体机 | 六自由度平台_六自由度运动平台_三自由度摇摆台—南京全控科技 | [品牌官网]贵州遵义双宁口腔连锁_贵州遵义牙科医院哪家好_种植牙_牙齿矫正_原华美口腔 | 黑龙江京科脑康医院-哈尔滨精神病医院哪家好_哈尔滨精神科医院排名_黑龙江精神心理病专科医院 | 棕刚玉_白刚玉_铝酸钙-锐石新材料 | 无锡不干胶标签,卷筒标签,无锡瑞彩包装材料有限公司 | 沈阳真空机_沈阳真空包装机_沈阳大米真空包装机-沈阳海鹞真空包装机械有限公司 | 北京办公室装修,办公室设计,写字楼装修-北京金视觉装饰工程公司 北京成考网-北京成人高考网 |