-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
加性數論-經典基 版權信息
- ISBN:9787510044090
- 條形碼:9787510044090 ; 978-7-5100-4409-0
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
加性數論-經典基 本書特色
《加性數論(經典基)》分為上下2卷。堆壘數論討論的是很經典的直接問題。在這個問題中,首先假定有一個自然數集合a和大于等于2的整數h,定義的和集ha是由所有的h和a中元素乘積的和組成,試圖描述和集ha的結構;相反地,在逆問題中,從和集ha開始,去尋找這樣的一個集合a。近年來,有關整數有限集的逆問題方面取得了顯著進展。特別地,freiman, kneser, plünnecke, vosper以及一些其他的學者在這方面做出了突出的貢獻。本書中包括了這些結果,并且用freiman定理的ruzsa證明將本書的內容推向了高潮。本書由納森著。
加性數論-經典基 內容簡介
《加性數論(經典基)》分為上下2卷。堆壘數論討論的是很經典的直接問題。在這個問題中,首先假定有一個自然數集合a和大于等于2的整數h,定義的和集ha是由所有的h和a中元素乘積的和組成,試圖描述和集ha的結構;相反地,在逆問題中,從和集ha開始,去尋找這樣的一個集合a。近年來,有關整數有限集的逆問題方面取得了顯著進展。特別地,freiman, kneser, plünnecke, vosper以及一些其他的學者在這方面做出了突出的貢獻。本書中包括了這些結果,并且用freiman定理的ruzsa證明將本書的內容推向了高潮。
加性數論-經典基 目錄
notation and conventior
i waring's problem
1 sums of polygor
1.1 polygonal number
1.2 lagrange's theorem
1.3 quadratic forms
1.4 ternary quadratic forms
1.5 sums of three squares
1.6 thin sets of squares
1.7 the polygonal number theorem
1.8 notes
1.9 exercises
2 waring's problem for cubes
2.1 sums of cubes
2.2 the wieferich-kempner theorem
2.3 linnik's theorem
2.4 sums of two cubes
2.5 notes
.2.6 exercises
3 the hilbert-waring theorem
3.1 polynomial identities and a conjecture of hurwitz
3.2 hermite polynomials and hilbert's identity
3.3 a proof by induction
3.4 notes
3.5 exercises
4 weyl's inequality
4.1 tools
4.2 difference operator
4.3 easier waring's problem
4.4 fractional parts
4.5 weyl's inequality and hua's lemma
4.6 notes
4.7 exercises
5 the hardy-littlewood asymptotic formula
5.1 the circle method
5.2 waring's problem for k = 1
5.3 the hardy-littlewood decomposition
5.4 the minor arcs
5.5 the major arcs
5.6 the singular integral
5.7 the singular series
5.8 conclusion
5.9 notes
5.10 exercises
ii the goldbach conjecture
6 elementary estimates for primes
6.1 euclid's theorem
6.2 chebyshev's theorem
6.3 merter's theorems
6.4 brun's method and twin primes
6.5 notes
6.6 exercises
7 the shnirel'man-goldbach theorem
7.1 the goldbach conjecture
7.2 the selberg sieve
7.3 applicatior of the sieve
7.4 shnirel'man derity
7.5 the shnirel'man-goldbach theorem
7.6 romanov's theorem
7.7 covering congruences
7.8 notes
7.9 exercises
8 sums of three primes
8.1 vinogradov's theorem
8.2 the singular series
8.3 decomposition into major and minor arcs
8.4 the integral over the major arcs
8.5 an exponential sum over primes
8.6 proof of the asymptotic formula
8.7 notes
8.8 exercise
9 the linear sieve
9.1 a general sieve
9.2 cortruction of a combinatorial sieve
9.3 approximatior
9.4 the jurkat-richert theorem
9.5 differential-difference equatior
9.6 notes
9.7 exercises
10 chen's theorem
10.1 primes and almost primes
10.2 weights
10.3 prolegomena to sieving
10.4 a lower bound for s(a, p, z)
10.5 an upper bound for s(aq, p, z)
10.6 an upper bound for s(b, p, y)
10.7 a bilinear form inequality
10.8 conclusion
10.9 notes
iii appendix
arithmetic functior
a.1 the ring of arithmetic functior
a.2 sums and integrals
a.3 multiplicative functior
a.4 the divisor function
a.5 the euler φ-function
a.6 the mobius function
a.7 ramanujan sums
a.8 infinite products
a.9 notes
a.10 exercises
bibliography
index
- >
伯納黛特,你要去哪(2021新版)
- >
月亮與六便士
- >
二體千字文
- >
隨園食單
- >
唐代進士錄
- >
人文閱讀與收藏·良友文學叢書:一天的工作
- >
有舍有得是人生
- >
自卑與超越