中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊

包郵 社交網絡對齊

作者:張忠寶
出版社:人民郵電出版社出版時間:2024-02-01
開本: 16開 頁數: 230
中 圖 價:¥73.9(7.4折) 定價  ¥99.8 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

社交網絡對齊 版權信息

  • ISBN:9787115622150
  • 條形碼:9787115622150 ; 978-7-115-62215-0
  • 裝幀:平裝-膠訂
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>>

社交網絡對齊 本書特色

1.作者所在學校具有深厚的計算機技術傳承,所在實驗室為網絡與交換技術國家重點實驗室。

2.目前市場社交網絡書籍空白很大,在社交網絡對齊方向還沒有相關的學術專著,對豐富社交網絡理論體系具有重要的意義。

3.理論與實際案例結合緊密,在系統詳細地介紹5種社交網絡對齊方法的模型、算法、實驗的基礎上,結合常見的用戶推薦、虛假新聞監測等應用,分析如何在實際中運用上述理論。

社交網絡對齊 內容簡介

本書分為基礎知識、社交網絡對齊方法、社交網絡對齊分析三部分,針對社交網絡對齊中的用戶對齊與社區對齊場景,系統地介紹了社交網絡對齊關鍵技術體系及其應用。 在基礎知識部分,定義了社交網絡并進行建模,介紹后續方法中所涉及的GNN、圖表示學習、知識圖譜表示等。在社交網絡方法部分,以模型建立、算法介紹、實驗分析的邏輯,重點分析了五種社交網絡對齊方法:靜態的社交網絡用戶對齊方法、動態的社交網絡用戶對齊方法、基于無監督學習的社交網絡用戶對齊方法、基于遷移學習的社交網絡用戶對齊方法、基于雙曲空間的社交網絡社區對齊方法。在社交網絡對齊分析部分,對用戶推薦、社區發現、網絡騙局、趨勢分析等涉及實際社交網絡對齊技術的應用進行案例分析,總結并展望了社交網絡的未來發展趨勢及待解決問題。

社交網絡對齊 目錄

第 一章 社交網絡 11

1.1 社交網絡與圖 11

1.1.1 社交網絡 12

1.1.2 社交網絡的形式化表達 18

1.2 圖 24

1.2.1 圖的經典算法 24

1.2.2 圖的結構分析 29

1.2.3 特殊的圖 34

1.3 社交網絡建模 37

1.3.1 小世界理論和六度空間 38

1.3.2 ER隨機網絡模型 38

1.3.3 WS小世界網絡模型 40

1.3.4 Barabási無標度網絡模型 42

1.4 本章小結 44

參考文獻 44

第二章 圖神經網絡 46

2.1 圖神經網絡基礎 46

2.1.1 神經元 46

2.1.2 多層感知機 49

2.1.3 誤差反向傳播算法 52

2.1.4 圖神經網絡 55

2.2 圖卷積網絡 55

2.2.1 卷積與池化 55

2.2.2 圖卷積 57

2.2.3 頻域圖卷積 58

2.2.4 空域圖卷積 65

2.3 圖注意力網絡 67

2.3.1 注意力機制 67

2.3.2 圖注意力網絡 69

2.4 本章小結 70

參考文獻 71

第三章 圖表示學習及其應用 73

3.1 圖嵌入相關理論 73

3.1.1 圖嵌入 73

3.1.2 編碼器與解碼器 74

3.2 基于隨機游走的圖表示學習 76

3.2.1DeepWalk 77

3.2.2 Node2vec 80

3.2.3 Metapath2vec 82

3.3 基于深度學習的圖表示學習 85

3.3.1 GraphSAGE 85

3.3.2 VGAE 88

3.3.3 GraphCL 91

3.4 本章小節 94

參考文獻 94

第四章 基于微分方程的動態圖表示學習方法 96

4.1 問題定義 100

4.1.1 符號與概念 100

4.1.2 問題描述 102

4.2 基于微分方程的動態圖網絡表示學習算法 102

4.2.1 算法框架 102

4.2.2 初始化 103

4.2.3 節點鄰居采樣 105

4.2.4 聚合操作 106

4.2.5 自定義損失函數與端到端優化 110

4.2.6 性能分析 111

4.3 基于受控微分方程的改進算法 112

4.3.1 問題引入 112

4.3.2 解決方案與分析 113

4.3.3 小結 117

4.4 實驗與分析 118

4.4.1 數據集 118

4.4.2 評價指標 119

4.4.3 對比方法 120

4.4.4 參數設置 121

4.4.5 主要結果和分析 123

4.4.6 其他結果 127

4.5 本章小結 128

參考文獻 130

第五章 基于狄利克雷分布的知識圖譜表示方法 134

5.1 問題定義 136

5.1.1 符號與概念 136

5.1.2 問題描述 137

5.2 利用狄利克雷分布的知識表示學習 137

5.2.1 模型建立 137

5.2.2 優化目標 139

5.3 DiriE表現能力理論分析 140

5.3.1 實體與關系的二元嵌入 140

5.3.2 復雜關系的表現能力 141

5.3.3 知識圖譜的不確定性 143

5.4 實驗與分析 144

5.4.1 數據集 144

5.4.2 相關任務 144

5.4.3 評價指標 145

5.4.4 主要結果和分析 145

5.4.5 關系模式與不確定性分析 147

5.5 本章小結 151

參考文獻 152

第六章 靜態的社交網絡用戶對齊方法 156

6.1 問題定義 157

6.1.1 符號與概念 157

6.1.2 問題描述 158

6.2 基于矩陣分解的用戶對齊方法 159

6.2.1 方法概述 159

6.2.2 有約束的雙重表征模型 160

6.2.3 非凸解耦的交替優化算法 162

6.2.4 收斂性分析 166

6.3 基于模糊聚類的并行化對齊方法 172

6.3.1 方法概述 173

6.3.2 增廣圖輔助表征階段 174

6.3.3 平衡感知的模糊聚類階段 174

6.4 實驗與分析 176

6.4.1 數據集 176

6.4.2 評價指標 177

6.4.3 對比方法 177

6.4.4 參數設置 178

6.4.5 結果和分析 178

6.5 本章小結 185

參考文獻 186

第七章 動態的社交網絡用戶對齊方法 189

7.1 問題定義 190

7.1.1 符號與概念 191

7.1.2 問題描述 191

7.2 基于圖神經網絡的聯合優化模型 191

7.2.1 模型概述 192

7.2.2 動態圖自編碼機 193

7.2.3 本征表示學習 195

7.2.4 聯合優化模型 196

7.3 協同圖深度學習的交替優化算法 196

7.3.1 算法概述 197

7.3.2 投影矩陣*優化子問題 198

7.3.3 本征矩陣*優化子問題 199

7.3.4 收斂性分析 201

7.4 實驗與分析 206

7.4.1 數據集 206

7.4.2 評價指標 207

7.4.3 對比方法 207

7.4.4 參數設置 208

7.4.5 結果和分析 209

7.5 本章小結 218

參考文獻 219

第八章 基于無監督學習的社交網絡用戶對齊方法 222

8.1 問題定義 224

8.1.1 符號與概念 224

8.1.2 問題描述 226

8.2 基于結構的無監督多網絡用戶對齊框架 227

8.2.1 結構公共子空間 227

8.2.2 多網絡節點映射 231

8.2.3 用戶相似度計算 233

8.3 聯合優化算法 234

8.3.1 公共子空間基 H 234

8.3.2 對角錐矩陣 B 239

8.3.3 復雜度分析 242

8.4 實驗與分析 243

8.4.1 數據集 243

8.4.2 評價指標 246

8.4.3 對比方法 247

8.4.4 參數設置 248

8.4.5 主要結果和分析 249

8.5 本章小結 253

參考文獻 254

第九章 基于遷移學習的社交網絡用戶對齊方法 257

9.1 問題定義 260

9.1.1 符號與概念 260

9.1.2 問題描述 262

9.2 REBORN框架 262

9.2.1 Ego-Transformer:社交網絡對齊 262

9.2.2 WWGAN:領域差異消除 267

9.2.3 REBORN:統一框架 270

9.3 實驗與分析 272

9.3.1 數據集 273

9.3.2 評價指標 273

9.3.3 對比方法 274

9.3.4 參數設置 275

9.3.5 主要結果和分析 277

9.4 本章小結 283

參考文獻 284

第十章 基于雙曲空間的社交網絡社區對齊方法 289

10.1 問題定義 290

10.1.1 符號與概念 290

10.1.2 問題描述 291

10.2 基于雙曲空間的社區對齊模型 291

10.2.1 模型概述 292

10.2.2 表征空間選擇 292

10.2.3 雙曲空間與龐加萊球模型 295

10.2.4 社交網絡的雙曲空間嵌入 297

10.2.5 混合雙曲聚類模型 297

10.2.6 社區對齊的*優化問題 298

10.3 基于黎曼幾何的交替優化算法 299

10.3.1 算法概述 300

10.3.2 社區表征*優化子問題 302

10.3.3 公共子空間*優化子問題 304

10.3.4 可識別性分析 306

10.4 實驗與分析 308

10.4.1 數據集 308

10.4.2 評價指標 309

10.4.3 對比方法 309

10.4.4 參數設置 311

10.4.5 結果和分析 311

10.5 本章小結 316

參考文獻 317

第十一章 社交網絡中的用戶推薦 320

11.1 簡介 320

11.1.1用戶推薦對社交網絡的作用和意義 320

11.1.2用戶推薦系統架構 321

11.2 基于傳統的推薦 (經典方法) 324

11.2.1 協同過濾User-CF Item-CF 324

11.2.2 邏輯回歸 328

11.2.3 FM(Factorization Machine,因子分解機) 329

11.2.4 GBDT LR 331

11.3 基于深度學習的推薦 (早期純深度學習經典方法) 333

11.3.1 Deep Crossing (2016) 333

11.3.2 Neural CF 335

11.3.3 PNN模型 336

11.3.4 DIN 或 AFM (注意力機制引入) 337

11.4 推薦在社交網絡的具體應用 339

11.4.1 注意力機制的實踐 339

11.4.2 自動學習路徑遞歸 342

11.4.3跨域推薦實現 343

11.5 推薦的熱點方向 345

11.5.1 DIEN 345

11.5.2自注意時序推薦 346

11.5.3 BERT4Rec順序推薦模型 348

11.6 本章小結 349

參考文獻 349

第十二章 社區發現 352

12.1社區發現簡介 352

12.1.1 社區發現的背景 353

12.1.2 社區發現的定義與預備知識 354

12.1.3 社區發現的發展歷史 355

12.2基于卷積網絡的社區發現方法 358

12.2.1基于CNN的社區發現 358

12.2.2基于GCN的社區發現 367

12.3基于圖注意力網絡的社區發現方法 375

12.3.1 MAGNN: 用于異質圖嵌入的元路徑聚合圖神經網絡 375

12.3.2 DMGI:無監督的多重網絡屬性表示 379

12.3.3HDMI: 高階深度可復用信息網絡 382

12.4基于圖對抗網絡的社區發現方法 384

12.4.1 JANE:聯合對抗網絡表示 384

12.4.2 ProGAN: 通過近似生成對抗網絡進行網絡嵌入 387

12.4.3 CANE:基于對抗訓練的社區發現網絡表示 390

12.5基于自編碼器的社區發現方法 391

12.5.1 SDCN:結構式深度聚類網絡 391

12.5.2 MAGCN:多視點屬性圖卷積網絡聚類模型 397

12.5.3 One2Multi:基于多視圖圖聚類的圖自編碼器 400

12.6 本章小結403

參考文獻 403

第十三章 社交網絡騙局 406

13.1 簡介 406

13.2 欺詐用戶檢測 407

13.2.1概述 407

13.2.2 圖在欺詐用戶檢測中的應用 408

13.2.3 基于圖卷積神經網絡的垃圾郵件檢測 411

13.2.4 基于強化學習檢測偽裝欺詐者 415

13.3謠言檢測 417

13.3.1 概述 417

13.3.2 基于雙向圖卷積網絡(Bi-GCN)的謠言檢測 419

13.3.3基于事件增強的謠言檢測 422

13.3.4 基于圖結構對抗學習的社交網絡謠言檢測 424

13.3.5 基于聯合學習的突發謠言檢測 428

13.4 虛假新聞檢測 431

13.4.1 概述 431

13.4.2 基于用戶可信度社交網絡虛假新聞檢測 432

13.4.3 基于強化學習的弱監督虛假新聞檢測 435

13.4.4 基于遷移學習的虛假新聞檢測 439

13.5本章小節 441

參考文獻 442

第十四章 社交網絡趨勢分析 445

14.1 簡介 445

14.2 情感分析 446

14.2.1 概述 446

14.2.2 用于社交網絡情感分析的卷積LSTM模型 447

14.2.3 基于模糊規則的社交網絡無監督情感分析 450

14.2.4 面向多模態社交網絡的輿情情感分析 452

14.3 觀點挖掘 453

14.3.1 概述 453

14.3.2基于詞匯和機器學習的社交網絡有用意見挖掘方法 454

14.3.3 基于多模態多視圖的觀點挖掘 456

14.3.4 基于交互式更新標簽的新冠疫情觀點挖掘 459

14.4 熱點事件分析 461

14.4.1 概述 461

14.4.2 社交網絡中實時緊急熱點識別系統 462

14.4.3 基于知識的多模態社會熱點分析 463

14.4.4 社交熱點的推特情感分析 466

14.5 用戶影響力分析 469

14.5.1概述 469

14.5.2衡量社交網絡用戶影響力的傳統方法 470

14.5.3 基于PageRank的微博用戶影響力分析 473

14.5.4 Github開發者社交網絡用戶影響分析 476

14.6本章小節 480

參考文獻 481
展開全部

社交網絡對齊 作者簡介

張忠寶,長期從事社交網絡分析、大數據處理領域研究工作。在該領域,創新性地提出了一系列針對靜態和動態場景、用戶和社區粒度的社交網絡對齊方法,提出了一系列基于融合的跨社交網絡用戶畫像和分析方法,并研發了一個社交網絡對齊與分析平臺。該平臺在相關領域得到了重要應用,實現了跨社交網絡賬號的關聯和融合分析,獲得了有關部門的肯定和認可。申請人以第一或通信作者身份發表CCF A類論文8篇。作為課題負責人主持國家重點研發計劃項目課題1項,主持國家自然科學基金項目2項,包括聯合基金培育項目1項(大數據環境下的人物身份消歧與融合算法,U1936103)和青年基金項目1項(動態環境下的虛擬網絡映射方法研究,61602050),以主研人參與國家重點研發計劃課題、國家自然科學基金創新研究群體項目和國家自然科學基金重點項目各1項。 申請人取得的主要研究成果有:1)在靜態社交網絡對齊方面,提出了一種魯棒的、可充分利用多社交網絡信息的用戶對齊方法,實現了多個社交網絡間高效率、高準確率的用戶對齊(IJCAI 2018、TKDE 2021);2)在動態用戶對齊方面,提出了一種基于循環神經網絡的社交網絡用戶對齊方法和一種基于用戶行為分析的社交網絡用戶對齊方法,提高了對齊的準確率(IJCAI 2020、AAAI 2021、AAAI 2022);3)在知識圖譜表示方面,提出了一種基于狄利克雷分布的知識圖譜表示方法,提升了表示的準確性(WWW 2022)。 在社會服務方面,擔任中國計算機學會服務計算專委會秘書處成員,中國人工智能學會委員,中國計算機學會大數據專委會通訊委員。擔任IEEE TKDE、AAAI、IEEE TNSM、Information Science、Computer Network、Globecom、ICC等20余個知名國際期刊審稿人/PC member。

商品評論(0條)
暫無評論……
書友推薦
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 密度电子天平-内校-外校电子天平-沈阳龙腾电子有限公司 | pos机办理,智能/扫码/二维码/微信支付宝pos机-北京万汇通宝商贸有限公司 | 合肥宠物店装修_合肥宠物美容院装修_合肥宠物医院设计装修公司-安徽盛世和居装饰 | 根系分析仪,大米外观品质检测仪,考种仪,藻类鉴定计数仪,叶面积仪,菌落计数仪,抑菌圈测量仪,抗生素效价测定仪,植物表型仪,冠层分析仪-杭州万深检测仪器网 | 广东成考网-广东成人高考网 | 挤奶设备过滤纸,牛奶过滤纸,挤奶机过滤袋-济南蓝贝尔工贸有限公司 | 护栏打桩机-打桩机厂家-恒新重工 | 青岛侦探_青岛侦探事务所_青岛劝退小三_青岛婚外情取证-青岛王军侦探事务所 | 浇钢砖,流钢砖_厂家价低-淄博恒森耐火材料有限公司 | 点焊机-缝焊机-闪光对焊机-电阻焊设备生产厂家-上海骏腾发智能设备有限公司 | 废旧物资回收公司_广州废旧设备回收_报废设备物资回收-益美工厂设备回收公司 | 河南卓美创业科技有限公司-河南卓美防雷公司-防雷接地-防雷工程-重庆避雷针-避雷器-防雷检测-避雷带-避雷针-避雷塔、机房防雷、古建筑防雷等-山西防雷公司 | 企典软件一站式企业管理平台,可私有、本地化部署!在线CRM客户关系管理系统|移动办公OA管理系统|HR人事管理系统|人力 | 中国产业发展研究网 - 提供行业研究报告 可行性研究报告 投资咨询 市场调研服务 | 郑州墨香品牌设计公司|品牌全案VI设计公司 | 产业规划_产业园区规划-产业投资选址及规划招商托管一体化服务商-中机院产业园区规划网 | 语料库-提供经典范文,文案句子,常用文书,您的写作得力助手 | 建筑资质代办-建筑企业资质代办机构-建筑资质代办公司 | 洗石机-移动滚筒式,振动,螺旋,洗矿机-青州冠诚重工机械有限公司 | 成都离婚律师|成都结婚律师|成都离婚财产分割律师|成都律师-成都离婚律师网 | 充气膜专家-气膜馆-PTFE膜结构-ETFE膜结构-商业街膜结构-奥克金鼎 | 钢制拖链生产厂家-全封闭钢制拖链-能源钢铝拖链-工程塑料拖链-河北汉洋机械制造有限公司 | 质构仪_鱼糜弹性仪-上海腾拔仪器科技有限公司 | 纯水电导率测定仪-万用气体检测仪-低钠测定仪-米沃奇科技(北京)有限公司www.milwaukeeinst.cn 锂辉石检测仪器,水泥成分快速分析仪-湘潭宇科分析仪器有限公司 手术室净化装修-手术室净化工程公司-华锐手术室净化厂家 | MOOG伺服阀维修,ATOS比例流量阀维修,伺服阀维修-上海纽顿液压设备有限公司 | 沈飞防静电地板__机房地板-深圳市沈飞防静电设备有限公司 | 智能门锁电机_智能门锁离合器_智能门锁电机厂家-温州劲力智能科技有限公司 | 自动化生产线-自动化装配线-直流电机自动化生产线-东莞市慧百自动化有限公司 | 直读光谱仪,光谱分析仪,手持式光谱仪,碳硫分析仪,创想仪器官网 | 北京京云律师事务所 | 丹佛斯变频器-Danfoss战略代理经销商-上海津信变频器有限公司 | 柴油机_柴油发电机_厂家_品牌-江苏卡得城仕发动机有限公司 | 六维力传感器_六分量力传感器_模腔压力传感器-南京数智微传感科技有限公司 | 据信,上课带着跳 D 体验-别样的课堂刺激感受引发网友热议 | 天助网 - 中小企业全网推广平台_生态整合营销知名服务商_天助网采购优选 | 悬浮拼装地板_篮球场木地板翻新_运动木地板价格-上海越禾运动地板厂家 | 不锈钢列管式冷凝器,换热器厂家-无锡飞尔诺环境工程有限公司 | 儿童乐园|游乐场|淘气堡招商加盟|室内儿童游乐园配套设备|生产厂家|开心哈乐儿童乐园 | 对夹式止回阀厂家,温州对夹式止回阀制造商--永嘉县润丰阀门有限公司 | 扬尘在线监测系统_工地噪声扬尘检测仪_扬尘监测系统_贝塔射线扬尘监测设备「风途物联网科技」 | 济南品牌包装设计公司_济南VI标志设计公司_山东锐尚文化传播 |