包郵 線性代數(shù):從理論到應(yīng)用(數(shù)據(jù)科學(xué)與統(tǒng)計(jì)專(zhuān)業(yè)適用)
-
>
闖進(jìn)數(shù)學(xué)世界――探秘歷史名題
-
>
中醫(yī)基礎(chǔ)理論
-
>
當(dāng)代中國(guó)政府與政治(新編21世紀(jì)公共管理系列教材)
-
>
高校軍事課教程
-
>
思想道德與法治(2021年版)
-
>
毛澤東思想和中國(guó)特色社會(huì)主義理論體系概論(2021年版)
-
>
中醫(yī)內(nèi)科學(xué)·全國(guó)中醫(yī)藥行業(yè)高等教育“十四五”規(guī)劃教材
線性代數(shù):從理論到應(yīng)用(數(shù)據(jù)科學(xué)與統(tǒng)計(jì)專(zhuān)業(yè)適用) 版權(quán)信息
- ISBN:9787111758426
- 條形碼:9787111758426 ; 978-7-111-75842-6
- 裝幀:平裝-膠訂
- 冊(cè)數(shù):暫無(wú)
- 重量:暫無(wú)
- 所屬分類(lèi):>
線性代數(shù):從理論到應(yīng)用(數(shù)據(jù)科學(xué)與統(tǒng)計(jì)專(zhuān)業(yè)適用) 本書(shū)特色
本書(shū)遵循教指委相關(guān)指導(dǎo)文件和高等院校學(xué)生學(xué)習(xí)規(guī)律編寫(xiě)而成。踐行四新理念,融入思政元素,注重理論與實(shí)踐相結(jié)合。
線性代數(shù):從理論到應(yīng)用(數(shù)據(jù)科學(xué)與統(tǒng)計(jì)專(zhuān)業(yè)適用) 內(nèi)容簡(jiǎn)介
本書(shū)是針對(duì)數(shù)據(jù)科學(xué)與統(tǒng)計(jì)專(zhuān)業(yè)學(xué)生編寫(xiě)的線性代數(shù)教材,共分為 5章:線性方程組與矩陣的運(yùn)算、線性方程組的解集結(jié)構(gòu)與向量空間、 正交與奇異值分解、行列式、特征值與特征向量. 本書(shū)兼顧理論和應(yīng)用、 證明和計(jì)算,強(qiáng)調(diào)理論與應(yīng)用結(jié)合、代數(shù)與幾何結(jié)合、分析推理與直觀 感覺(jué)結(jié)合. 學(xué)生通過(guò)對(duì)本書(shū)的學(xué)習(xí),可以為以后專(zhuān)業(yè)課的學(xué)習(xí)打下扎實(shí) 的線性代數(shù)基礎(chǔ). 同時(shí),本書(shū)使用 Julia 軟件作為計(jì)算、繪圖工具,開(kāi) 放源代碼,學(xué)生可以進(jìn)行一定的計(jì)算和編程訓(xùn)練. 在數(shù)字時(shí)代,線性代 數(shù)的工具性對(duì)于人才發(fā)展至關(guān)重要,進(jìn)行“工具型”的線性代數(shù)基礎(chǔ)教 育,可以培養(yǎng)學(xué)生在數(shù)字時(shí)代的數(shù)學(xué)能力和問(wèn)題解決能力. 此外,本書(shū) 包含了豐富的思政元素,可以引導(dǎo)學(xué)生樹(shù)立正確的世界觀、人生觀、價(jià) 值觀. 本書(shū)除適合數(shù)據(jù)科學(xué)與統(tǒng)計(jì)專(zhuān)業(yè)學(xué)生使用外,也可供數(shù)學(xué)相關(guān)專(zhuān)業(yè) 學(xué)生閱讀.
線性代數(shù):從理論到應(yīng)用(數(shù)據(jù)科學(xué)與統(tǒng)計(jì)專(zhuān)業(yè)適用) 目錄
第 1 章 線性方程組與矩陣的運(yùn)算 1
1.1 向量 2
1.2 線性方程組 6
1.3 消元法 16
1.4 矩陣的逆 30
1.5 矩陣的轉(zhuǎn)置與置換矩陣 42
第 2 章 線性方程組的解集結(jié)構(gòu)與向量空間 50
2.1 向量空間及其子空間 51
2.2 線性相關(guān)和線性無(wú)關(guān)的向量組 54
2.3 齊次線性方程組的解集結(jié)構(gòu) 62
2.4 非齊次線性方程組的解集結(jié)構(gòu) 71
2.5 和矩陣相關(guān)的四個(gè)子空間 77
2.6 非線性方程組的解 * 82
第 3 章 正交與奇異值分解 91
3.1 歐幾里得空間 92
3.2 矩陣的四個(gè)子空間 96
3.3 奇異值分解 * 104
3.4 投影與*小二乘法 116
3.5 Gram-Schmidt 正交化 127
3.6 正交函數(shù) * 134
第 4 章 行列式 143
4.1 行列式的定義、性質(zhì)及其計(jì)算 143
4.2 行列式按行 (列) 展開(kāi)、克拉默法則 149
VIII 線性代數(shù):從理論到應(yīng)用(數(shù)據(jù)科學(xué)與統(tǒng)計(jì)專(zhuān)業(yè)適用)
4.3 分塊矩陣 161
第 5 章 特征值與特征向量 169
5.1 矩陣的特征值與特征向量 169
5.2 矩陣的對(duì)角化 182
5.3 對(duì)稱(chēng)矩陣的對(duì)角化與二次型 193
5.4 正定矩陣與正定二次型 209
5.5 主成分分析 * 217
5.6 馬爾可夫鏈 * 223
5.7 解微分方程組 * 229
附錄 243
附錄 A 習(xí)題答案 243
A.1 線性方程組與矩陣的運(yùn)算 243
A.2 線性方程組的解集結(jié)構(gòu)與向量空間 265
A.3 正交與奇異值分解 283
A.4 行列式 294
A.5 特征值與特征向量 306
附錄 B 相關(guān)概念和軟件使用 323
B.1 相關(guān)概念 323
B.2 Julia 326
索引 328
參考文獻(xiàn) 332
- >
我從未如此眷戀人間
- >
姑媽的寶刀
- >
伯納黛特,你要去哪(2021新版)
- >
二體千字文
- >
經(jīng)典常談
- >
月亮與六便士
- >
羅庸西南聯(lián)大授課錄
- >
我與地壇