中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
Early-age cracking control on modern concrete

包郵 Early-age cracking control on modern concrete

出版社:科學出版社出版時間:2024-09-01
開本: 24cm 頁數: 17,439頁
本類榜單:工業技術銷量榜
中 圖 價:¥214.6(7.2折) 定價  ¥298.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

Early-age cracking control on modern concrete 版權信息

  • ISBN:9787030794246
  • 條形碼:9787030794246 ; 978-7-03-079424-6
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

Early-age cracking control on modern concrete 內容簡介

本書通過試驗和理論建模研究,提出了現代混凝土裂縫診治的措施,為現代混凝土裂縫控制技術的工程應用提供了理論基礎,本文的具體研究內容如下:(1)揭示了不同水灰比、養護溫度和濕度條件下普通混凝土早齡期自收縮、拉伸徐變和抗裂性能等指標的變化規律,構建了混凝土早齡期濕度和自收縮預測模型;(2)揭示了不同礦物摻合料下高強混凝土的早齡期收縮變形規律,探明了不同礦物摻合料對高強混凝土的作用機理,分別提出了不同摻量粉煤灰、礦粉和硅灰下高強混凝土早齡期自收縮和拉伸徐變預測模型;(3)揭示了摻纖維高強混凝土在不同纖維種類和摻量下抗裂性能的變化規律,并考慮了不同纖維種類、纖維摻量和長度對高強混凝土早齡期應力松弛和拉伸徐變的影響,并提出了相應的自收縮預測模型。

Early-age cracking control on modern concrete 目錄

1 Introduction 1 1.1 Early-age Cracking of Modern Concrete . 1 1.1.1 Significance of Early-age Cracking 1 1.2 Causes of Early-age Cracking 2 1.3 Measures for Controlling Early-age Cracking of Concrete 3 1.3.1 Mitigating the Drop in Internal Relative Humidity . 3 1.3.2 Controlling the Change of Temperature 4 1.3.3 Decreasing the Early-age Shrinkage . 4 1.3.4 Increasing the Tensile Strength . 5 1.4 Objectives and Scope . 6 References 9 2 Techniques and Methods for Evaluating the Early-age Cracking Resistance of Modern Concrete 13 2.1 Introduction . 13 2.2 Early-age Internal Relative Humidity in Concrete . 13 2.2.1 Test Device andMethod . 13 2.2.2 Calculation of Internal Relative Humidity Decrease Rate 15 2.3 Early-age Autogenous Shrinkage . 15 2.3.1 Test Device andMethod . 15 2.3.2 Calculation of Autogenous Shrinkage 16 2.4 Early-age Mechanical Properties . 18 2.4.1 Compressive Strength . 18 2.4.2 Tensile Strength 19 2.4.3 Static Elastic Modulus . 19 2.4.4 Dynamic Elastic Modulus 20 2.4.5 Bond Behavior . 22 2.5 Early-age Tensile Creep . 23 2.5.1 Test Device andMethod . 23 2.5.2 Calculation of Tensile Creep . 26 2.5.3 Calculation of Tensile Creep Coefficient . 27 2.5.4 Calculation of Specific Tensile Creep 27 2.6 Early-age Cracking Resistance Under Circumferential Restrained Condition . 27 2.6.1 Test Device andMethod . 27 2.6.2 Calculation of Residual Stress 30 2.6.3 Calculation of Stress Rate 30 2.6.4 Calculation of Cracking Potential . 31 2.6.5 Calculation of Stress Relaxation 31 2.7 Early-age Cracking Resistance Under Uniaxial Restrained Condition . 34 2.7.1 Test Device andMethod . 34 2.7.2 Calculation of Temperature History . 35 2.7.3 Calculation of Creep 36 2.7.4 Calculation of Cracking Resistance 36 References 37 3 Evaluation on Early-age Cracking Resistance of Concrete . 41 3.1 Introduction . 41 3.2 Internal Relative Humidity in Early-age Concrete . 42 3.2.1 Internal Relative Humidity . 42 3.2.2 Critical Time of Internal Relative Humidity . 44 3.2.3 Internal Relative Humidity Decrease Rate 45 3.2.4 Moisture Diffusion 47 3.2.5 Prediction Models for Internal Relative Humidity 48 3.3 Early-age Cracking Resistance of Concrete with Different Water-to-Cement Ratios Under Circumferential Restrained Condition . 57 3.3.1 Mechanical Properties . 57 3.3.2 Free Shrinkage . 58 3.3.3 Steel Ring Strain . 59 3.3.4 Residual Stress . 60 3.3.5 Stress Relaxation . 61 3.3.6 Cracking Resistance . 64 3.4 Early-age Cracking Resistance of Concrete with Different Water-to-Cement Ratios Under Uniaxial Restrained Condition . 65 3.4.1 Temperature History 65 3.4.2 Autogenous Shrinkage . 67 3.4.3 Restrained Stress . 68 3.4.4 Tensile Creep 71 3.4.5 Cracking Resistance . 73 3.5 Early-age Cracking Resistance of High Performance Concrete with Different Curing Temperatures Under Uniaxial Restrained Condition . 74 Contents ix 3.5.1 Autogenous Shrinkage . 74 3.5.2 Ratio of Stress to Tensile Strength . 82 3.5.3 Cracking Resistance . 84 3.6 Summary . 85 References 86 4 Early-age Cracking Control on Concrete with Fly Ash 91 4.1 Introduction . 91 4.2 Mechanical Properties 92 4.2.1 Compressive Strength . 93 4.2.2 Tensile Strength 96 4.2.3 Tensile Young's Modulus 100 4.3 Early-age Cracking Resistance of High Performance Concrete with Fly Ash Under Circumferential Restrained Condition . 105 4.3.1 Free Shrinkage . 105 4.3.2 Steel Ring Strain . 106 4.3.3 Residual Stress . 107 4.3.4 Stress Rate . 109 4.3.5 Stress Relaxation . 110 4.4 Early-age Cracking Resistance of High Performance Concrete with Fly Ash Under Uniaxial Restrained Condition . 111 4.4.1 Autogenous Shrinkage . 112 4.4.2 Temperature History 113 4.4.3 Restrained Stress . 114 4.4.4 Tensile Creep 118 4.4.5 Cracking Resistance . 119 4.5 Summary . 120 References 121 5 Early-age Cracking Control on Concrete with Ground Granulated Blast Furnace Slag . 125 5.1 Introduction . 125 5.2 Mechanical Properties 126 5.3 Early-age Cracking Resistance of High Performance Concrete with Ground Granulated Blast Furnace Slag Under Circumferential Restrained Condition . 128 5.3.1 Free Shrinkage . 128 5.3.2 Steel Ring Strain . 128 5.3.3 Residual Stress . 129 5.3.4 Stress Rate . 130 5.3.5 Cracking Potential 131 5.3.6 Stress Relaxation . 132 x Contents 5.4 Early-age Cracking Resistance of High Performance Concrete with Ground Granulated Blast Furnace Slag Under Uniaxial Restrained Condition . 133 5.4.1 Temperature History 133 5.4.2 Autogenous Shrinkage . 134 5.4.3 Restrained Stress . 135 5.4.4 Cracking Resistance . 138 5.5 Summary . 139 References 140 6 Early-age Cracking Control on Concrete with Silica Fume 143 6.1 Introduction . 143 6.2 Mechanical Properties 144 6.3 Early-age Cracking Resistance of High Strength Concrete with Silica Fume Under Uniaxial Restrained Condition 146 6.3.1 Temperature History 146 6.3.2 Autogenous Shrinkage . 148 6.3.3 Tensile Creep 150 6.3.4 Restrained Stress . 152 6.3.5 Cracking Resistance . 154 6.4 Summary . 155 References 155 7 Early-age Cracking Control on Concrete with 3D Hooked-End Steel Fiber 159 7.1 Introduction . 159 7.2 Mechanical Properties 160 7.3 Tensile Creep of 3D Hooked-End Steel Fiber Reinforced Concrete Under a Constant Tensile Load . 164 7.3.1 Tensile Creep of Concrete with Different Contents of 3D Hooked-End Steel Fiber 164 7.3.2 Tensile Creep of Concrete with Different Thermal Treatment Temperatures . 168 7.3.3 Prediction Model for Early-age Tensile Creep . 170 7.4 Early-age Cracking Resistance of High Strength Concrete Reinforced with 3D Hooked-End Steel Fiber Under Uniaxial Restrained Condition . 175 7.4.1 Temperature History 175 7.4.2 Autogenous Shrinkage . 177 7.4.3 Restrained Stress . 180 7.4.4 Cracking Resistance . 182 7.5 Early-age Cracking Resistance of 3D Hooked-End Steel Fiber Reinforced Concrete Under Different Curing Temperatures 184 7.5.1 Temperature History 184 7.5.2 Autogenous Shrinkage . 186 Contents xi 7.5.3 Restrained Stress . 189 7.5.4 Tensile Creep 191 7.5.5 Cracking Resistance . 194 7.6 Summary . 195 References 196 8 Early-age Cracking Control on Concrete with 5D Hooked-End Steel Fiber 199 8.1 Introduction . 199 8.2 Mechanical Properties 200 8.3 Early-age Cracking Resistance of Concrete with 5D Hooked-End Steel Fiber Under Circumferential Restrained Condition . 201 8.3.1 Steel Ring Strain . 201 8.3.2 Residual Stress . 203 8.3.3 Free Shrinkage . 203 8.3.4 Stress Rate . 204 8.3.5 Cracking Potential 204 8.3.6 Stress Relaxation . 205 8.4 Early-age Cracking Resistance of Concrete with 5D Hooked-End Steel Fiber Under Uniaxial Restrained Condition . 208 8.4.1 Temperature History 208 8.4.2 Autogenous Shrinkage . 209 8.4.3 Restrained Stress . 212 8.4.4 Cracking Resistance . 214 8.5 Summary . 216 References 216 9 Early-age Cracking Control on Concrete with Polypropylene Fiber . 219 9.1 Introduction . 219 9.2 Mechanical Properties 220 9.3 Early-age Autogenous Shrinkage of High Strength Concrete with Polypropylene Fiber . 222 9.3.1 Temperature History 222 9.3.2 Autogenous Shrinkage . 222 9.3.3 Ultrasonic Velocity 225 9.3.4 Prediction Model of Autogenous Shrinkage Strain Based on Ultrasonic Velocity . 228 9.4 Early-age Tensile Creep of Concrete with Polypropylene Fiber . 231 9.4.1 Autogenous Shrinkage . 231 9.4.2 Tensile Creep 232 9.4.3 Mechanism of Polypropylene Fiber Reinforcement 234 9.4.4 Modeling of Creep of Fiber Reinforced Concrete 236 xii Contents 9.5 Early-age Cracking Resistance of High Strength Concrete with Polypropylene Fiber Under Circumferential Restrained Condition . 238 9.5.1 Free Shrinkage . 238 9.5.2 Steel Ring Strain . 239 9.5.3 Residual Stress . 239 9.5.4 Stress Rate . 240 9.5.5 Cracking Potential 241 9.5.6 Stress Relaxation . 242 9.6 Early-age Cracking Resistance of High Performance Concrete with Different Amounts of Polypropylene Fiber Under Uniaxial Restrained Condition . 243 9.6.1 Temperature History 243 9.6.2 Autogenous Shrinkage . 244 9.6.3 Restrained Stress . 245 9.6.4 Compressive and Tensile Creep . 247 9.6.5 Cracking Resistance . 249 9.7 Early-age Cracking Resistance of High Performance Concrete with Different Polypropylene Fiber Lengths Under Uniaxial Restrained Condition . 250 9.7.1 Temperature History 250 9.7.2 Autogenous Shrinkage . 251 9.7.3 Restrained Stress . 252 9.7.4 Tensile Creep 254 9.7.5 Cracking Resistance . 256 9.8 Summary . 257 References 258 10 Early-age Cracking Control on High Strength Concrete with Polyvinyl Alcohol Fibers 263 10.1 Introduction . 263 10.2 Mechanical Properties 264 10.3 Early-age Cracking Resistance of High Strength Concrete with Polyvinyl Alcohol Fibers Under Circumferential Restrained Condition . 267 10.3.1 Residual Stress . 268 10.3.2 Stress Rate . 268 10.3.3 Stress Relaxation . 269 10.3.4 Cracking Potential 270 10.4 Early-age Cracking Resistance of High Strength Concrete with Polyvinyl Alcohol Fiber Under Uniaxial Restrained Condition . 273 10.4.1 Temperature History 273 10.4.2 Autogenous Shrinkage . 273 10.4.3 Restrained Stress . 276 Contents xiii 10.4.4 Compressive and Tensile Creep . 279 10.4.5 Cracking Resistance . 282 10.5 Summary . 283 References 283 11 Early-age Cracking Control on High Strength Concrete with Nano-CaCO3 . 287 11.1 Introduction . 287 11.2 Mechanical Properties 288 11.3 Early-age Cracking Resistance of High Strength Concrete with Nano-CaCO3 Under Circumferential Restrained Condition . 290 11.3.1 Free Shrinkage . 290 11.3.2 Residual Stress . 291 11.3.3 Cracking Potential 292 11.3.4 Stress Relaxation . 293 11.3.5 Tensile Creep 295 11.3.6 Relationship Between Relaxation and Creep 295 11.4 Early-age Cracking Resistance of High Strength Concrete with Nano-CaCO3 Under Uniaxial Restrained Condition . 298 11.4.1 Temperature History 298 11.4.2 Restrained Stress . 299 11.4.3 Autogenous Shrinkage . 300 11.4.4 Tensile Creep 301 11.4.5 Cracking Resistance . 304 11.4.6 Simplified Stress–Strain Failure Criterion 305 11.5 Summary . 308 References 308 12 Early-age Cracking Control on High Strength Concrete with Crystalline Admixture 311 12.1 Introduction . 311 12.2 Mechanical Properties 312 12.3 Early-age Cracking Resistance of High Strength Concrete with Crystalline Admixture Under Circumferential Restrained Condition . 315 12.3.1 Free Shrinkage . 315 12.3.2 Residual Stress . 316 12.3.3 Stress Rate . 317 12.3.4 Cracking Potential 319 12.3.5 Stress Relaxation . 320 12.4 Summary . 321 References 322 13 Early-age Cracking Control on Concrete with MgO Compound Expansive Agent . 325 13.1 Introduction . 325 13.2 Deformation of Concrete 326 13.2.1 Free Strain . 326 13.2.2 Autogenous Strain 328 13.3 Restrained Stress of Concrete 331 13.3.1 Restrained Stress . 331 13.3.2 Stress Relaxation and Ratio of Stress to Tensile Strength . 333 13.4 Early-age Creep Behavior . 335 13.4.1 Compressive Creep . 335 13.4.2 Tensile Creep 337 13.5 Cracking Resistance 338 13.5.1 Parameters for Evaluating Cracking Resistance 338 13.5.2 Evaluation of Cracking Resistance 341 13.6 Simplified Stress–Strain Cracking Criterion 342 13.7 Summary . 344 References 344 14 Early-age Cracking Control on Concrete with Temperature Rise Inhibitor . 349 14.1 Introduction . 349 14.2 Mechanical Properties 350 14.3 Early-age Cracking Resistance of High Strength Concrete with Temperature Rise Inhibitor Under Uniaxial Restrained Condition . 351 14.3.1 Temperature History 351 14.3.2 Restrained Stress . 352 14.3.3 Autogenous Shrinkage . 353 14.3.4 Tensile Creep 356 14.3.5 Cracking Resistance . 360 14.3.6 Simplified Stress–Strain Failure Criterion 361 14.4 Summary . 364 References 364 15 Early-age Cracking Control on High Strength Concrete with Shrinkage Reducing Admixture 367 15.1 Introduction . 367 15.2 Mechanical Properties 368 15.3 Early-age Cracking Resistance of High Strength Concrete with Shrinkage Reducing Admixture Under Circumferential Restrained Condition . 370 15.3.1 Free Shrinkage . 370 15.3.2 Steel Ring Strain . 371 15.3.3 Residual Stress . 372 15.3.4 Stress Rate . 372 15.3.5 Cracking Potential 373 15.3.6 Stress Relaxation . 375 15.4 Early-age Cracking Resistance of High Strength Concrete with Shrinkage Reducing Admixture Under Uniaxial Restrained Condition . 377 15.4.1 Temperature History 377 15.4.2 Autogenous Shrinkage . 378 15.4.3 Tensile Creep 380 15.4.4 Restrained Stress . 382 15.4.5 Cracking Resistance . 383 15.5 Summary . 384 References 384 16 Early-age Cracking Control on Concrete with Reinforcing Bars . 387 16.1 Introduction . 387 16.2 Early-age Bond Behavior Between High Strength Concrete and Reinforcing Bars . 388 16.2.1 Relationship Between Bond Strength and Age 388 16.2.2 Relationship Between Bond Strength and Concrete Strength . 392 16.2.3 Prediction Model for the Slip Corresponding to Bond Strength . 396 16.2.4 Prediction Model for Bond Stress–Slip Relationship Between Reinforcing Bars and High Strength Concrete . 397 16.3 Early-age Cracking Resistance of Reinforced High Strength Concrete Under Uniaxial Restrained Condition . 401 16.3.1 Temperature History 401 16.3.2 Autogenous Shrinkage . 403 16.3.3 Restrained Stress . 406 16.3.4 Tensile Creep 408 16.3.5 Cracking Resistance . 408 16.4 Summary . 409 References 410 17 Early-age Cracking Control on Concrete with Internal Curing 413 17.1 Introduction . 413 17.2 Early-age Cracking Control on Concrete with Internal Curing by Super Absorbent Polymers . 414 17.2.1 Mechanical Properties . 414 17.2.2 Temperature History 416 17.2.3 Autogenous Shrinkage . 418 17.2.4 Restrained Stress . 419 xvi Contents 17.2.5 Tensile Creep 421 17.2.6 Cracking Resistance . 423 17.3 Early-age Cracking Control on Concrete with Internal Curing by Pre-wetted Lightweight Aggregates 424 17.3.1 Mechanical Properties . 424 17.3.2 Steel Ring Strain . 428 17.3.3 Residual Stress . 429 17.3.4 Stress Rate . 430 17.3.5 Stress Relaxation . 431 17.3.6 Tensile Creep 432 17.3.7 Relationship Between Relaxation and Creep 434 17.4 Summary . 435 References 436
展開全部
商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 南溪在线-南溪招聘找工作、找房子、找对象,南溪综合生活信息门户! | 武汉创亿电气设备有限公司_电力检测设备生产厂家 | 交变/复合盐雾试验箱-高低温冲击试验箱_安奈设备产品供应杭州/江苏南京/安徽马鞍山合肥等全国各地 | 厌氧反应器,IC厌氧反应器,厌氧三相分离器-山东创博环保科技有限公司 | 全自动在线分板机_铣刀式在线分板机_曲线分板机_PCB分板机-东莞市亿协自动化设备有限公司 | CXB船用变压器-JCZ系列制动器-HH101船用铜质开关-上海永上船舶电器厂 | 预制舱-电力集装箱预制舱-模块化预制舱生产厂家-腾达电器设备 | 阴离子聚丙烯酰胺价格_PAM_高分子聚丙烯酰胺厂家-河南泰航净水材料有限公司 | 多功能干燥机,过滤洗涤干燥三合一设备-无锡市张华医药设备有限公司 | 洛阳防爆合格证办理-洛阳防爆认证机构-洛阳申请国家防爆合格证-洛阳本安防爆认证代办-洛阳沪南抚防爆电气技术服务有限公司 | 菏泽知彼网络科技有限公司| 杭州网络公司_百度SEO优化-外贸网络推广_抖音小程序开发-杭州乐软科技有限公司 | 安平县鑫川金属丝网制品有限公司,防风抑尘网,单峰防风抑尘,不锈钢防风抑尘网,铝板防风抑尘网,镀铝锌防风抑尘网 | 闸阀_截止阀_止回阀「生产厂家」-上海卡比阀门有限公司 | 春腾云财 - 为企业提供专业财税咨询、代理记账服务 | 实体店商新零售|微赢|波后|波后合作|微赢集团| 土壤养分检测仪_肥料养分检测仪_土壤水分检测仪-山东莱恩德仪器 大型多片锯,圆木多片锯,方木多片锯,板材多片锯-祥富机械有限公司 | 北京中航时代-耐电压击穿试验仪厂家-电压击穿试验机 | 不锈钢水箱生产厂家_消防水箱生产厂家-河南联固供水设备有限公司 | 空心明胶胶囊|植物胶囊|清真胶囊|浙江绿键胶囊有限公司欢迎您! | 吲哚菁绿衍生物-酶底物法大肠菌群检测试剂-北京和信同通科技发展有限公司 | 环氧树脂地坪漆_济宁市新天地漆业有限公司 | 工业PH计|工业ph酸度计|在线PH计价格-合肥卓尔仪器仪表有限公司 济南画室培训-美术高考培训-山东艺霖艺术培训画室 | 洛阳网站建设_洛阳网站优化_网站建设平台_洛阳香河网络科技有限公司 | 飞扬动力官网-广告公司管理软件,广告公司管理系统,喷绘写真条幅制作管理软件,广告公司ERP系统 | 南昌旅行社_南昌国际旅行社_南昌国旅在线 | 多米诺-多米诺世界纪录团队-多米诺世界-多米诺团队培训-多米诺公关活动-多米诺创意广告-多米诺大型表演-多米诺专业赛事 | 鼓风干燥箱_真空烘箱_高温干燥箱_恒温培养箱-上海笃特科学仪器 | 净化车间_洁净厂房_净化公司_净化厂房_无尘室工程_洁净工程装修|改造|施工-深圳净化公司 | 不锈钢搅拌罐_高速搅拌罐厂家-无锡市凡格德化工装备科技有限公司 | 密封圈_泛塞封_格莱圈-[东莞市国昊密封圈科技有限公司]专注密封圈定制生产厂家 | 空调风机,低噪声离心式通风机,不锈钢防爆风机,前倾皮带传动风机,后倾空调风机-山东捷风风机有限公司 | elisa试剂盒价格-酶联免疫试剂盒-猪elisa试剂盒-上海恒远生物科技有限公司 | 杭州营业执照代办-公司变更价格-许可证办理流程_杭州福道财务管理咨询有限公司 | 中央空调维修、中央空调保养、螺杆压缩机维修-苏州东菱空调 | 苏州同创电子有限公司 - 四探针测试仪源头厂家 | 成都办公室装修-办公室设计-写字楼装修设计-厂房装修-四川和信建筑装饰工程有限公司 | 臭氧实验装置_实验室臭氧发生器-北京同林臭氧装置网 | 电子万能试验机_液压拉力试验机_冲击疲劳试验机_材料试验机厂家-济南众标仪器设备有限公司 | 灌装封尾机_胶水灌装机_软管灌装封尾机_无锡和博自动化机械制造有限公司 | 超细粉碎机|超微气流磨|气流分级机|粉体改性设备|超微粉碎设备-山东埃尔派粉碎机厂家 |