中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
公路車寶典(ZINN的公路車維修與保養秘籍)
-
>
晶體管電路設計(下)
-
>
基于個性化設計策略的智能交通系統關鍵技術
-
>
花樣百出:貴州少數民族圖案填色
-
>
山東教育出版社有限公司技術轉移與技術創新歷史叢書中國高等技術教育的蘇化(1949—1961)以北京地區為中心
-
>
鐵路機車概要.交流傳動內燃.電力機車
-
>
利維坦的道德困境:早期現代政治哲學的問題與脈絡
Early-age cracking control on modern concrete 版權信息
- ISBN:9787030794246
- 條形碼:9787030794246 ; 978-7-03-079424-6
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
Early-age cracking control on modern concrete 內容簡介
本書通過試驗和理論建模研究,提出了現代混凝土裂縫診治的措施,為現代混凝土裂縫控制技術的工程應用提供了理論基礎,本文的具體研究內容如下:(1)揭示了不同水灰比、養護溫度和濕度條件下普通混凝土早齡期自收縮、拉伸徐變和抗裂性能等指標的變化規律,構建了混凝土早齡期濕度和自收縮預測模型;(2)揭示了不同礦物摻合料下高強混凝土的早齡期收縮變形規律,探明了不同礦物摻合料對高強混凝土的作用機理,分別提出了不同摻量粉煤灰、礦粉和硅灰下高強混凝土早齡期自收縮和拉伸徐變預測模型;(3)揭示了摻纖維高強混凝土在不同纖維種類和摻量下抗裂性能的變化規律,并考慮了不同纖維種類、纖維摻量和長度對高強混凝土早齡期應力松弛和拉伸徐變的影響,并提出了相應的自收縮預測模型。
Early-age cracking control on modern concrete 目錄
1 Introduction 1
1.1 Early-age Cracking of Modern Concrete . 1
1.1.1 Significance of Early-age Cracking 1
1.2 Causes of Early-age Cracking 2
1.3 Measures for Controlling Early-age Cracking of Concrete 3
1.3.1 Mitigating the Drop in Internal Relative Humidity . 3
1.3.2 Controlling the Change of Temperature 4
1.3.3 Decreasing the Early-age Shrinkage . 4
1.3.4 Increasing the Tensile Strength . 5
1.4 Objectives and Scope . 6
References 9
2 Techniques and Methods for Evaluating the Early-age
Cracking Resistance of Modern Concrete 13
2.1 Introduction . 13
2.2 Early-age Internal Relative Humidity in Concrete . 13
2.2.1 Test Device andMethod . 13
2.2.2 Calculation of Internal Relative Humidity
Decrease Rate 15
2.3 Early-age Autogenous Shrinkage . 15
2.3.1 Test Device andMethod . 15
2.3.2 Calculation of Autogenous Shrinkage 16
2.4 Early-age Mechanical Properties . 18
2.4.1 Compressive Strength . 18
2.4.2 Tensile Strength 19
2.4.3 Static Elastic Modulus . 19
2.4.4 Dynamic Elastic Modulus 20
2.4.5 Bond Behavior . 22
2.5 Early-age Tensile Creep . 23
2.5.1 Test Device andMethod . 23
2.5.2 Calculation of Tensile Creep . 26
2.5.3 Calculation of Tensile Creep Coefficient . 27
2.5.4 Calculation of Specific Tensile Creep 27
2.6 Early-age Cracking Resistance Under Circumferential
Restrained Condition . 27
2.6.1 Test Device andMethod . 27
2.6.2 Calculation of Residual Stress 30
2.6.3 Calculation of Stress Rate 30
2.6.4 Calculation of Cracking Potential . 31
2.6.5 Calculation of Stress Relaxation 31
2.7 Early-age Cracking Resistance Under Uniaxial Restrained
Condition . 34
2.7.1 Test Device andMethod . 34
2.7.2 Calculation of Temperature History . 35
2.7.3 Calculation of Creep 36
2.7.4 Calculation of Cracking Resistance 36
References 37
3 Evaluation on Early-age Cracking Resistance of Concrete . 41
3.1 Introduction . 41
3.2 Internal Relative Humidity in Early-age Concrete . 42
3.2.1 Internal Relative Humidity . 42
3.2.2 Critical Time of Internal Relative Humidity . 44
3.2.3 Internal Relative Humidity Decrease Rate 45
3.2.4 Moisture Diffusion 47
3.2.5 Prediction Models for Internal Relative Humidity 48
3.3 Early-age Cracking Resistance of Concrete with Different
Water-to-Cement Ratios Under Circumferential Restrained
Condition . 57
3.3.1 Mechanical Properties . 57
3.3.2 Free Shrinkage . 58
3.3.3 Steel Ring Strain . 59
3.3.4 Residual Stress . 60
3.3.5 Stress Relaxation . 61
3.3.6 Cracking Resistance . 64
3.4 Early-age Cracking Resistance of Concrete with Different
Water-to-Cement Ratios Under Uniaxial Restrained
Condition . 65
3.4.1 Temperature History 65
3.4.2 Autogenous Shrinkage . 67
3.4.3 Restrained Stress . 68
3.4.4 Tensile Creep 71
3.4.5 Cracking Resistance . 73
3.5 Early-age Cracking Resistance of High Performance
Concrete with Different Curing Temperatures Under
Uniaxial Restrained Condition . 74
Contents ix
3.5.1 Autogenous Shrinkage . 74
3.5.2 Ratio of Stress to Tensile Strength . 82
3.5.3 Cracking Resistance . 84
3.6 Summary . 85
References 86
4 Early-age Cracking Control on Concrete with Fly Ash 91
4.1 Introduction . 91
4.2 Mechanical Properties 92
4.2.1 Compressive Strength . 93
4.2.2 Tensile Strength 96
4.2.3 Tensile Young's Modulus 100
4.3 Early-age Cracking Resistance of High Performance
Concrete with Fly Ash Under Circumferential Restrained
Condition . 105
4.3.1 Free Shrinkage . 105
4.3.2 Steel Ring Strain . 106
4.3.3 Residual Stress . 107
4.3.4 Stress Rate . 109
4.3.5 Stress Relaxation . 110
4.4 Early-age Cracking Resistance of High Performance
Concrete with Fly Ash Under Uniaxial Restrained
Condition . 111
4.4.1 Autogenous Shrinkage . 112
4.4.2 Temperature History 113
4.4.3 Restrained Stress . 114
4.4.4 Tensile Creep 118
4.4.5 Cracking Resistance . 119
4.5 Summary . 120
References 121
5 Early-age Cracking Control on Concrete with Ground
Granulated Blast Furnace Slag . 125
5.1 Introduction . 125
5.2 Mechanical Properties 126
5.3 Early-age Cracking Resistance of High Performance
Concrete with Ground Granulated Blast Furnace Slag
Under Circumferential Restrained Condition . 128
5.3.1 Free Shrinkage . 128
5.3.2 Steel Ring Strain . 128
5.3.3 Residual Stress . 129
5.3.4 Stress Rate . 130
5.3.5 Cracking Potential 131
5.3.6 Stress Relaxation . 132
x Contents
5.4 Early-age Cracking Resistance of High Performance
Concrete with Ground Granulated Blast Furnace Slag
Under Uniaxial Restrained Condition . 133
5.4.1 Temperature History 133
5.4.2 Autogenous Shrinkage . 134
5.4.3 Restrained Stress . 135
5.4.4 Cracking Resistance . 138
5.5 Summary . 139
References 140
6 Early-age Cracking Control on Concrete with Silica Fume 143
6.1 Introduction . 143
6.2 Mechanical Properties 144
6.3 Early-age Cracking Resistance of High Strength Concrete
with Silica Fume Under Uniaxial Restrained Condition 146
6.3.1 Temperature History 146
6.3.2 Autogenous Shrinkage . 148
6.3.3 Tensile Creep 150
6.3.4 Restrained Stress . 152
6.3.5 Cracking Resistance . 154
6.4 Summary . 155
References 155
7 Early-age Cracking Control on Concrete with 3D Hooked-End
Steel Fiber 159
7.1 Introduction . 159
7.2 Mechanical Properties 160
7.3 Tensile Creep of 3D Hooked-End Steel Fiber Reinforced
Concrete Under a Constant Tensile Load . 164
7.3.1 Tensile Creep of Concrete with Different Contents
of 3D Hooked-End Steel Fiber 164
7.3.2 Tensile Creep of Concrete with Different Thermal
Treatment Temperatures . 168
7.3.3 Prediction Model for Early-age Tensile Creep . 170
7.4 Early-age Cracking Resistance of High Strength Concrete
Reinforced with 3D Hooked-End Steel Fiber Under
Uniaxial Restrained Condition . 175
7.4.1 Temperature History 175
7.4.2 Autogenous Shrinkage . 177
7.4.3 Restrained Stress . 180
7.4.4 Cracking Resistance . 182
7.5 Early-age Cracking Resistance of 3D Hooked-End Steel
Fiber Reinforced Concrete Under Different Curing
Temperatures 184
7.5.1 Temperature History 184
7.5.2 Autogenous Shrinkage . 186
Contents xi
7.5.3 Restrained Stress . 189
7.5.4 Tensile Creep 191
7.5.5 Cracking Resistance . 194
7.6 Summary . 195
References 196
8 Early-age Cracking Control on Concrete with 5D Hooked-End
Steel Fiber 199
8.1 Introduction . 199
8.2 Mechanical Properties 200
8.3 Early-age Cracking Resistance of Concrete with 5D
Hooked-End Steel Fiber Under Circumferential Restrained
Condition . 201
8.3.1 Steel Ring Strain . 201
8.3.2 Residual Stress . 203
8.3.3 Free Shrinkage . 203
8.3.4 Stress Rate . 204
8.3.5 Cracking Potential 204
8.3.6 Stress Relaxation . 205
8.4 Early-age Cracking Resistance of Concrete with 5D
Hooked-End Steel Fiber Under Uniaxial Restrained
Condition . 208
8.4.1 Temperature History 208
8.4.2 Autogenous Shrinkage . 209
8.4.3 Restrained Stress . 212
8.4.4 Cracking Resistance . 214
8.5 Summary . 216
References 216
9 Early-age Cracking Control on Concrete with Polypropylene
Fiber . 219
9.1 Introduction . 219
9.2 Mechanical Properties 220
9.3 Early-age Autogenous Shrinkage of High Strength
Concrete with Polypropylene Fiber . 222
9.3.1 Temperature History 222
9.3.2 Autogenous Shrinkage . 222
9.3.3 Ultrasonic Velocity 225
9.3.4 Prediction Model of Autogenous Shrinkage Strain
Based on Ultrasonic Velocity . 228
9.4 Early-age Tensile Creep of Concrete with Polypropylene
Fiber . 231
9.4.1 Autogenous Shrinkage . 231
9.4.2 Tensile Creep 232
9.4.3 Mechanism of Polypropylene Fiber Reinforcement 234
9.4.4 Modeling of Creep of Fiber Reinforced Concrete 236
xii Contents
9.5 Early-age Cracking Resistance of High Strength Concrete
with Polypropylene Fiber Under Circumferential
Restrained Condition . 238
9.5.1 Free Shrinkage . 238
9.5.2 Steel Ring Strain . 239
9.5.3 Residual Stress . 239
9.5.4 Stress Rate . 240
9.5.5 Cracking Potential 241
9.5.6 Stress Relaxation . 242
9.6 Early-age Cracking Resistance of High Performance
Concrete with Different Amounts of Polypropylene Fiber
Under Uniaxial Restrained Condition . 243
9.6.1 Temperature History 243
9.6.2 Autogenous Shrinkage . 244
9.6.3 Restrained Stress . 245
9.6.4 Compressive and Tensile Creep . 247
9.6.5 Cracking Resistance . 249
9.7 Early-age Cracking Resistance of High Performance
Concrete with Different Polypropylene Fiber Lengths
Under Uniaxial Restrained Condition . 250
9.7.1 Temperature History 250
9.7.2 Autogenous Shrinkage . 251
9.7.3 Restrained Stress . 252
9.7.4 Tensile Creep 254
9.7.5 Cracking Resistance . 256
9.8 Summary . 257
References 258
10 Early-age Cracking Control on High Strength Concrete
with Polyvinyl Alcohol Fibers 263
10.1 Introduction . 263
10.2 Mechanical Properties 264
10.3 Early-age Cracking Resistance of High Strength Concrete
with Polyvinyl Alcohol Fibers Under Circumferential
Restrained Condition . 267
10.3.1 Residual Stress . 268
10.3.2 Stress Rate . 268
10.3.3 Stress Relaxation . 269
10.3.4 Cracking Potential 270
10.4 Early-age Cracking Resistance of High Strength Concrete
with Polyvinyl Alcohol Fiber Under Uniaxial Restrained
Condition . 273
10.4.1 Temperature History 273
10.4.2 Autogenous Shrinkage . 273
10.4.3 Restrained Stress . 276
Contents xiii
10.4.4 Compressive and Tensile Creep . 279
10.4.5 Cracking Resistance . 282
10.5 Summary . 283
References 283
11 Early-age Cracking Control on High Strength Concrete
with Nano-CaCO3 . 287
11.1 Introduction . 287
11.2 Mechanical Properties 288
11.3 Early-age Cracking Resistance of High Strength Concrete
with Nano-CaCO3 Under Circumferential Restrained
Condition . 290
11.3.1 Free Shrinkage . 290
11.3.2 Residual Stress . 291
11.3.3 Cracking Potential 292
11.3.4 Stress Relaxation . 293
11.3.5 Tensile Creep 295
11.3.6 Relationship Between Relaxation and Creep 295
11.4 Early-age Cracking Resistance of High Strength Concrete
with Nano-CaCO3 Under Uniaxial Restrained Condition . 298
11.4.1 Temperature History 298
11.4.2 Restrained Stress . 299
11.4.3 Autogenous Shrinkage . 300
11.4.4 Tensile Creep 301
11.4.5 Cracking Resistance . 304
11.4.6 Simplified Stress–Strain Failure Criterion 305
11.5 Summary . 308
References 308
12 Early-age Cracking Control on High Strength Concrete
with Crystalline Admixture 311
12.1 Introduction . 311
12.2 Mechanical Properties 312
12.3 Early-age Cracking Resistance of High Strength Concrete
with Crystalline Admixture Under Circumferential
Restrained Condition . 315
12.3.1 Free Shrinkage . 315
12.3.2 Residual Stress . 316
12.3.3 Stress Rate . 317
12.3.4 Cracking Potential 319
12.3.5 Stress Relaxation . 320
12.4 Summary . 321
References 322
13 Early-age Cracking Control on Concrete with MgO
Compound Expansive Agent . 325
13.1 Introduction . 325
13.2 Deformation of Concrete 326
13.2.1 Free Strain . 326
13.2.2 Autogenous Strain 328
13.3 Restrained Stress of Concrete 331
13.3.1 Restrained Stress . 331
13.3.2 Stress Relaxation and Ratio of Stress to Tensile
Strength . 333
13.4 Early-age Creep Behavior . 335
13.4.1 Compressive Creep . 335
13.4.2 Tensile Creep 337
13.5 Cracking Resistance 338
13.5.1 Parameters for Evaluating Cracking Resistance 338
13.5.2 Evaluation of Cracking Resistance 341
13.6 Simplified Stress–Strain Cracking Criterion 342
13.7 Summary . 344
References 344
14 Early-age Cracking Control on Concrete with Temperature
Rise Inhibitor . 349
14.1 Introduction . 349
14.2 Mechanical Properties 350
14.3 Early-age Cracking Resistance of High Strength Concrete
with Temperature Rise Inhibitor Under Uniaxial Restrained
Condition . 351
14.3.1 Temperature History 351
14.3.2 Restrained Stress . 352
14.3.3 Autogenous Shrinkage . 353
14.3.4 Tensile Creep 356
14.3.5 Cracking Resistance . 360
14.3.6 Simplified Stress–Strain Failure Criterion 361
14.4 Summary . 364
References 364
15 Early-age Cracking Control on High Strength Concrete
with Shrinkage Reducing Admixture 367
15.1 Introduction . 367
15.2 Mechanical Properties 368
15.3 Early-age Cracking Resistance of High Strength
Concrete with Shrinkage Reducing Admixture Under
Circumferential Restrained Condition . 370
15.3.1 Free Shrinkage . 370
15.3.2 Steel Ring Strain . 371
15.3.3 Residual Stress . 372
15.3.4 Stress Rate . 372
15.3.5 Cracking Potential 373
15.3.6 Stress Relaxation . 375
15.4 Early-age Cracking Resistance of High Strength Concrete
with Shrinkage Reducing Admixture Under Uniaxial
Restrained Condition . 377
15.4.1 Temperature History 377
15.4.2 Autogenous Shrinkage . 378
15.4.3 Tensile Creep 380
15.4.4 Restrained Stress . 382
15.4.5 Cracking Resistance . 383
15.5 Summary . 384
References 384
16 Early-age Cracking Control on Concrete with Reinforcing
Bars . 387
16.1 Introduction . 387
16.2 Early-age Bond Behavior Between High Strength Concrete
and Reinforcing Bars . 388
16.2.1 Relationship Between Bond Strength and Age 388
16.2.2 Relationship Between Bond Strength and Concrete
Strength . 392
16.2.3 Prediction Model for the Slip Corresponding
to Bond Strength . 396
16.2.4 Prediction Model for Bond Stress–Slip
Relationship Between Reinforcing Bars and High
Strength Concrete . 397
16.3 Early-age Cracking Resistance of Reinforced High
Strength Concrete Under Uniaxial Restrained Condition . 401
16.3.1 Temperature History 401
16.3.2 Autogenous Shrinkage . 403
16.3.3 Restrained Stress . 406
16.3.4 Tensile Creep 408
16.3.5 Cracking Resistance . 408
16.4 Summary . 409
References 410
17 Early-age Cracking Control on Concrete with Internal Curing 413
17.1 Introduction . 413
17.2 Early-age Cracking Control on Concrete with Internal
Curing by Super Absorbent Polymers . 414
17.2.1 Mechanical Properties . 414
17.2.2 Temperature History 416
17.2.3 Autogenous Shrinkage . 418
17.2.4 Restrained Stress . 419
xvi Contents
17.2.5 Tensile Creep 421
17.2.6 Cracking Resistance . 423
17.3 Early-age Cracking Control on Concrete with Internal
Curing by Pre-wetted Lightweight Aggregates 424
17.3.1 Mechanical Properties . 424
17.3.2 Steel Ring Strain . 428
17.3.3 Residual Stress . 429
17.3.4 Stress Rate . 430
17.3.5 Stress Relaxation . 431
17.3.6 Tensile Creep 432
17.3.7 Relationship Between Relaxation and Creep 434
17.4 Summary . 435
References 436
展開全部
書友推薦
- >
李白與唐代文化
- >
羅庸西南聯大授課錄
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
羅曼·羅蘭讀書隨筆-精裝
- >
中國歷史的瞬間
- >
巴金-再思錄
- >
苦雨齋序跋文-周作人自編集
- >
唐代進士錄
本類暢銷