掃一掃
關注中圖網(wǎng)
官方微博
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
Mathematical methods of classical mechanics 版權信息
- ISBN:9787519296667
- 條形碼:9787519296667 ; 978-7-5192-9666-7
- 裝幀:精裝
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
Mathematical methods of classical mechanics 內容簡介
這是莫斯科大學理論力學的優(yōu)秀教材,論述了振動理論、剛體運動和哈密頓形式體系等動力學中的所有基本問題,特別強調了邊分原理和分析力學及成為量子力學理論基石的哈密頓形式體系。在附錄中介紹了經(jīng)典力學與數(shù)學、物理學及其它領域的聯(lián)系。可供理論力學專業(yè)、數(shù)學力學專業(yè)的研究生及科技人員參考。
目次:牛頓力學:實驗;運動方程研究。拉格朗日力學;變分原理;流形上的拉格朗日力學;振動;剛體。哈密頓力學:微分形式;辛流形;典型形式體系;攝動理論導引。
Mathematical methods of classical mechanics 目錄
Preface
Preface to the second edition
Part Ⅰ NEWTONIAN MECHANICS
Chapter 1 Experimental facts
1.The principles of relativity and determinacy
2.The galilean group and Newton's equations
3.Examples of mechanical systems
Chapter 2 Investigation of the equations of motion
4.Systems with one degree of freedom
5.Systems with two degrees of freedom
6.Conservative force felds
7.Angular momentum
8.Investigation of motion in a central feld
9.The motion of a point in three-space
10.Motions of a system of n points
11.The method of similarity
Part Ⅱ LAGRANGIAN MECHANICS
Chapter 3 Variational principles
12.Calculus of variations
13.Lagrange's equations
14.Legendre transformations
15.Hamilton's equations
16.Liouville's theorem
Chapter 4 Lagrangian mechanics on manifolds
17.Holonomic constraints
18.Diferentiable manifolds
19.Lagrangian dynamical systems
20.E.Noether's theorem
21.D'Alembert's principle
Chapter 5 Oscillations
22.Linearization
23.Small oscillations
24.Behavior of characteristic frequencies
25.Parametric resonance
Chapter 6 Rigid bodies
26.Motion in a moving coordinate system
27.Inertial forces and the Coriolis force
28.Rigid bodies
29.Euler's equations. Poinsot's description of the motion iteor lo eslqonn
30.Lagrange's top
31.Sleeping tops and fast tops
Part Ⅲ HAMILTONIAN MECHANICS
Chapter 7 Diferential forms
32.Exterior forms
33.Exterior multiplication
34.Differential forms
35.Integration of differential forms
36.Exterior differentiation
Chapter 8 Symplectic manifolds
37.Symplectic structures on manifolds
38.Hamiltonian phase flows and their integral invariants
39.The Lie algebra of vector fields
40.The Lie algebra of hamiltonian functions
41.Symplectic geometry
42.Parametric resonance in systems with many degrees of freedom
43.A symplectic atlas
Chapter 9 Canonical formalism
44.The integral invariant of Poincaré Cartan
45.Applications of the integral invariant of Poincaré-Cartan
46.Huygens' principle
47.The Hamilton-Jacobi method for integrating Hamilton's canonical equations
48.Generating functions
Chapter 10 Introduction to perturbation theory
49.Integrable systems
50.Action-angle variables
51.Averaging
52.Averaging of perturbations
Appendix 1 Riemannian curvature
Appendix 2 Geodesics of left-invariant metrics on Lie groups and the hydrodynamics of ideal fluids
Appendix 3 Symplectic structures on algebraic manifolds
Appendix 4 Contact structures
Appendix 5 Dynamical systems with symmetries
Appendix 6 Normal forms of quadratic hamiltonians
Appendix 7 Normal forms of hamiltonian systems near stationary points and closed trajectories
Appendix 8 Theory of perturbations of conditionally periodic motion, and Kolmogorov's theorem
Appendix 9 Poincaré's geometric theorem, its generalizations and applications
Appendix 10 Multiplicities of characteristic frequencies, and ellipsoids depending on parameters
Appendix 11 Short wave asymptotics
Appendix 12 Lagrangian singularities
Appendix 13 The Korteweg-de Vries equation
Appendix 14 Poisson structures
Appendix 15 On elliptic coordinates
Appendix 16 Singularities of ray systems
Index
展開全部
Mathematical methods of classical mechanics 作者簡介
弗拉基米爾·阿諾德(Vladimir Igorevich Arnold,1937~2010),20世紀最偉大的數(shù)學家之一,動力系統(tǒng)和古典力學等方面的大師。俄羅斯科學院院士,1982年獲首屆Crafoord獎,2001年獲Wolf獎,2008年獲Shaw獎。
書友推薦
- >
中國人在烏蘇里邊疆區(qū):歷史與人類學概述
- >
姑媽的寶刀
- >
回憶愛瑪儂
- >
羅曼·羅蘭讀書隨筆-精裝
- >
巴金-再思錄
- >
中國歷史的瞬間
- >
詩經(jīng)-先民的歌唱
- >
自卑與超越
本類暢銷