中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
Lectures on partial differential equation 版權信息
- ISBN:9787519296681
- 條形碼:9787519296681 ; 978-7-5192-9668-1
- 裝幀:精裝
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
Lectures on partial differential equation 內容簡介
本書是蘇聯/俄羅斯數學家阿諾德為本科生寫的講義,內容簡明扼要,讀者只需掌握線性代數、基礎分析和常微分方程知識。主要包括以下內容:單一階方程的一般理論;波傳播理論中的Huygens原理;弦振動;傅里葉方法;振蕩理論和振動原理;調和函數特性;拉普拉斯基本解及位勢;雙層位勢;球函數、麥克斯韋定理和可去奇點定理;用拉普拉斯方程解邊界值問題;線性方程和線性系統理論。
Lectures on partial differential equation 目錄
Preface to the Second Russian Edition
1.The General Theory for One First-Order Equation
Literature
2.The General Theory for One First-Order Equation (Continued)
Literature
3.Huygens' Principle in the Theory of Wave Propagation
4.1.The Vibrating String (d'Alembert's Method)
4.1.The General Solution
4.2.Boundary-Value Problems and the Cauchy Problem
4.3.The Cauchy Problem for an Infinite String. d'Alembert's Formula
4.4.The Semi-Infinite String
4.5.The Finite String Resonance
4.6.The Fourier Method
5.The Fourier Method (for the Vibrating String)
5.1.Solution of the Problem in the Space of Trigonometric Polynomials
5.2.A Digression
5.3.Formulas for Solving the Problem of Section 5.1
5.4.The General Case
5.5.Fourier Series
5.6.Convergence of Fourier Series
5.7.Gibbs' Phenomenon
6.The Theory of Oscillations.The Variational Principle.adro 41
Literature
7.The Theory of Oscillations.The Variational Principle (Continued)
8.Properties of Harmonic Functions
8.1.Consequences of the Mean-Value Theorem
8.2.The Mean-Value Theorem in the Multidimensional Case
9.The Fundamental Solution for the Laplacian.Potentials
9.1.Examples and Properties
9.2.A Digression.The Principle of Superposition
9.3.Appendix.An Estimate of the Single-Layer Potential
10.The Double-Layer Potential
10.1.Properties of the Double-Layer Potential
11.Spherical Functions.Maxwell's Theorem.The Removable Singularities Theorem
12.Boundary-Value Problems for Laplace's Equation.Theory of Linear Equations and Systems
12.1.Four Boundary-Value Problems for Laplace's Equation
12.2.Existence and Uniqueness of Solutions
12.3.Linear Partial Differential Equations and Their Symbols
A.The Topological Content of Maxwell's Theorem on the Multifeld Representation of Spherical Functions
A.1.The Basic Spaces and Groups
A.2.Some Theorems of Real Algebraic Geometry
A.3.From Algebraic Geometry to Spherical Functions
A.4.Explicit Formulasa
A.5.Maxwell's Theorem and CP2/conj≈S4
A.6.The History of Maxwell's Theorem Literature
B.Problems
B.1.Material from the Seminars
B.2.Written Examination Problems
展開全部
Lectures on partial differential equation 作者簡介
弗拉基米爾·阿諾德(Vladimir Igorevich Arnold,1937~2010),20世紀最偉大的數學家之一,動力系統和古典力學等方面的大師。俄羅斯科學院院士,1982年獲首屆Crafoord獎,2001年獲Wolf獎,2008年獲Shaw獎。
書友推薦
- >
我從未如此眷戀人間
- >
隨園食單
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
回憶愛瑪儂
- >
唐代進士錄
- >
苦雨齋序跋文-周作人自編集
- >
山海經
- >
月亮與六便士
本類暢銷