中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
Ordinary differential equations 版權信息
- ISBN:9787519296674
- 條形碼:9787519296674 ; 978-7-5192-9667-4
- 裝幀:平裝-膠訂
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
Ordinary differential equations 內容簡介
.這本蘇聯/俄羅斯數學家阿諾德所著的常微分方程講義獨具特色。書中強調常微分方程的定性性質和幾何性質及其它們的解,全書有272個幾何插圖,卻沒有一個復雜的數學公式。全書分為5章36節。本書是阿諾德的名著,他的許多優秀作品都被翻譯為英文,本書是其中的一本,其簡明的寫作風格、嚴謹的數學基礎結合物理直覺,給人一種很輕松漫談式的教學特點,被譽為*優秀的常微分教材。
Ordinary differential equations 目錄
Chapter 1. Basic Concepts
§1. Phase Spaces
1. Examples of Evolutionary Processes
2. Phase Spaces
3. The Integral Curves of a Direction Field
4. A Differential Equation and its Solutions
5. The Evolutionary Equation with a One-dimensional Phase Space
6. Example: The Equation of Normal Reproduction
7. Example: The Explosion Equation
8. Example: The Logistic Curve
9. Example: Harvest Quotas
10. Example: Harvesting with a Relative Quota,
11. Equations with a Multidimensional Phase Space
12. Example: The Differential Equation of a Predator-Prey System
13. Example: A Free Particle on a Line
14. Example: Free Fall
15. Example: Small Oscillations
16. Example: The Mathematical Pendulum
17. Example: The Inverted Pendulum
18. Example: Small Oscillations of a Spherical Pendulum
§2. Vector Fields on the Line
1. Existence and Uniqueness of Solutions
2. A Counterexample :
3. Proof of Uniqueness
4. Direct Products
5. Examples of Direct Products
6. Equations with Separable Variables
7. An Example: The Lotka-Volterra Model
§3. Linear Equations
1. Homogeneous Linear Equations
2. First-order Homogeneous Linear Equations with Periodic Coefficients
3. Inhomogeneous Linear Equations
4. The Influence Function and b-shaped Inhomogeneities
5. Inhomogeneous Linear Equations with Periodic Coefficients
§4. Phase Flows
1. The Action of a Group on a Set
2. One-parameter Transformation Groups
3. One-parameter Diffeomorphism Groups
4. The Phase Velocity Vector Field
§5. The Action of Diffeomorphlsms on Vector Fields and Direction Fields
1. The Action of Smooth Mappings on Vectors
2. The Action of Diffeomorphisms on Vector Fields
3. Change of Variables in an Equation
4. The Action of a Diffeomorphism on a Direction Field
5. The Action of a Diffeomorphism on a Phase Flow
§6. Symmetries
1. Symmetry Groups
2. Application of a One-parameter Symmetry Group to Integrate an Equation
3. Homogeneous Equations
4. Quasi-homogeneous Equations
5. Similarity and Dimensional Considerations
6. Methods of Integrating Differential Equations
Chapter 2. Basic Theorems
§7. Rectification Theorems
1. Rectification of a Direction Field
2. Existence and Uniqueness Theorems
3. Theorems on Continuous and Differentiable Dependence of the Solutions on the Initial Condition
4. Transformation over the Time Interval from to to t
5. Theorems on Continuous and Differentiable Dependence on a Parameter
6. Extension Theorems
7. Rectification of a Vector Field
§8. Applications to Equations of Higher Order than First
1. The Equivalence of an Equation of Order n and a System of n First-order Equations
2. Existence and Uniqueness Theorems
3. Differentiability and Extension Theorems
……
Chapter 3. Linear Systems
Chapter 4. Proofs of the Main Theorems
Chapter 5. Differential Equations on Manifolds
Examination Topics
Sample Examination Problems
Subject Index
展開全部
Ordinary differential equations 作者簡介
弗拉基米爾·阿諾德(Vladimir Igorevich Arnold,1937~2010),20世紀最偉大的數學家之一,動力系統和古典力學等方面的大師。俄羅斯科學院院士,1982年獲首屆Crafoord獎,2001年獲Wolf獎,2008年獲Shaw獎。
書友推薦
- >
【精裝繪本】畫給孩子的中國神話
- >
回憶愛瑪儂
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
- >
我與地壇
- >
姑媽的寶刀
- >
上帝之肋:男人的真實旅程
- >
月亮與六便士
- >
詩經-先民的歌唱
本類暢銷