掃一掃
關注中圖網
官方微博
分析學教程.第2卷,多元函數的微分和積分,向量微積分:英文 版權信息
- ISBN:9787576706123
- 條形碼:9787576706123 ; 978-7-5767-0612-3
- 裝幀:平裝-膠訂
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
分析學教程.第2卷,多元函數的微分和積分,向量微積分:英文 內容簡介
本書的目標是為學生和講師提供易于理解的資料。本書是為大學二年級以上的學生設計的分析學課程的第二卷,本書包括多元函數的微分、多元函數的積分、矢量微積分三部分,本卷的目的是將一個實變量實值函數的分析擴展到從Rm到Rn的映射。
分析學教程.第2卷,多元函數的微分和積分,向量微積分:英文 目錄
Preface
Introduction
List of Symbols
Part 3: Differentiation of Functions of Several Variables
1 Metric Spaces
2 Convergence and Continuity in Metric Spaces
3 More on Metric Spaces and Continuous Functions
4 Continuous Mappings Between Subsets of Euclidean Spaces
5 Partial Derivatives
6 The Differential of a Mapping
7 Curves in Rn
8 Surfaces in R3. A First Encounter
9 Taylor Formula and Local Extreme Values
10 Implicit Functions and the Inverse Mapping Theorem
11 Further Applications of the Derivatives
12 Curvilinear Coordinates
13 Convex Sets and Convex Functions in Rn
14 Spaces of Continuous Functions as Banach Spaces
15 Line Integrals
Part 4: Integration of Functions of Several Variables
16 Towards Volume Integrals in the Sense of Riemann
17 Parameter Dependent and Iterated Integrals
18 Volume Integrals on Hyper-Rectangles
19 Boundaries in Rn and Jordan Measurable Sets
20 Volume Integrals on Bounded Jordan Measurable Sets
21 The Transformation Theorem: Result and Applications
22 Improper Integrals and Parameter Dependent Integrals
Part 5: Vector Calculus
23 The Scope of Vector Calculus
24 The Area of a Surface in R3 and Surface Integrals
25 Gauss' Theorem in R3
26 Stokes' Theorem in R2 and R3
27 Gauss’ Theorem for Rn
Appendices
Appendix I: Vector Spaces and Linear Mappings
Appendix II: Two Postponed Proofs of Part 3
Solutions to Problems of Part 3
Solutions to Problems of Part 4
Solutions to Problems of Part 5
References
Mathematicians Contributing to Analysis (Continued)
Subject Index
編輯手記
Introduction
List of Symbols
Part 3: Differentiation of Functions of Several Variables
1 Metric Spaces
2 Convergence and Continuity in Metric Spaces
3 More on Metric Spaces and Continuous Functions
4 Continuous Mappings Between Subsets of Euclidean Spaces
5 Partial Derivatives
6 The Differential of a Mapping
7 Curves in Rn
8 Surfaces in R3. A First Encounter
9 Taylor Formula and Local Extreme Values
10 Implicit Functions and the Inverse Mapping Theorem
11 Further Applications of the Derivatives
12 Curvilinear Coordinates
13 Convex Sets and Convex Functions in Rn
14 Spaces of Continuous Functions as Banach Spaces
15 Line Integrals
Part 4: Integration of Functions of Several Variables
16 Towards Volume Integrals in the Sense of Riemann
17 Parameter Dependent and Iterated Integrals
18 Volume Integrals on Hyper-Rectangles
19 Boundaries in Rn and Jordan Measurable Sets
20 Volume Integrals on Bounded Jordan Measurable Sets
21 The Transformation Theorem: Result and Applications
22 Improper Integrals and Parameter Dependent Integrals
Part 5: Vector Calculus
23 The Scope of Vector Calculus
24 The Area of a Surface in R3 and Surface Integrals
25 Gauss' Theorem in R3
26 Stokes' Theorem in R2 and R3
27 Gauss’ Theorem for Rn
Appendices
Appendix I: Vector Spaces and Linear Mappings
Appendix II: Two Postponed Proofs of Part 3
Solutions to Problems of Part 3
Solutions to Problems of Part 4
Solutions to Problems of Part 5
References
Mathematicians Contributing to Analysis (Continued)
Subject Index
編輯手記
展開全部
分析學教程.第2卷,多元函數的微分和積分,向量微積分:英文 作者簡介
尼爾斯·雅各布(Niels Jacob),英國數學家,英國斯旺西大學教授。
書友推薦
- >
山海經
- >
伊索寓言-世界文學名著典藏-全譯本
- >
詩經-先民的歌唱
- >
推拿
- >
經典常談
- >
月亮虎
- >
上帝之肋:男人的真實旅程
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)
本類暢銷