中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
Transformers自然語言處理 修訂版(影印版) 版權信息
- ISBN:9787576605891
- 條形碼:9787576605891 ; 978-7-5766-0589-1
- 裝幀:平裝-膠訂
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
Transformers自然語言處理 修訂版(影印版) 內容簡介
自2017年推出以來,transformer已迅速成為在各種自然語言處理任務上實現很好結果的主導架構。如果你是一名數據科學家或程序員,這本實踐用書,現已改為全彩印刷,將向你展示如何使用基于python的深度學習庫Hugging Face Transformers訓練和擴展這些大型模型。Transformers已經被用來撰寫真實的新聞故事、改進Google搜索查詢,甚至是創建會講老套笑話的聊天機器人。在這本指南中,作者Lewis Tunstall、Leandro von Werra、Thomas Wolf是Hugging Face Transformers的創建者,他們通過實踐方法來教你如何使用Transformer以及如何將其集成到你的應用中。你將快速學習可以由transformer幫助解決的各種任務。
Transformers自然語言處理 修訂版(影印版) 目錄
Foreword
Preface
1. Hello Transformers
The Encoder-Decoder Framework
Attention Mechanisms
Transfer Learning in NLP
Hugging Face Transformers: Bridging the Gap
A Tour of Transformer Applications
Text Classification
Named Entity Recognition
Question Answering
Summarization
Translation
Text Generation
The Hugging Face Ecosystem
The Hugging Face Hub
Hugging Face Tokenizers
Hugging Face Datasets
Hugging Face Accelerate
Main Challenges with Transformers
Conclusion
2. Text Classification
The Dataset
A First Look at Hugging Face Datasets
From Datasets to DataFrames
Looking at the Class Distribution
How Long Are Our Tweets?
From Text to Tokens
Character Tokenization
Word Tokenization
Subword Tokenization
Tokenizing the Whole Dataset
Training a Text Classifier
Transformers as Feature Extractors
Fine-Tuning Transformers
Conclusion
3. Transformer Anatomy
The Transformer Architecture
The Encoder
Self-Attention
The Feed-Forward Layer
Adding Layer Normalization
Positional Embeddings
Adding a Classification Head
The Decoder
Meet the Transformers
The Transformer Tree of Life
The Encoder Branch
The Decoder Branch
The Encoder-Decoder Branch
Conclusion
4. Multilingual Named Entity Recognition
The Dataset
Multilingual Transformers
A Closer Look at Tokenization
The Tokenizer Pipeline
The SentencePiece Tokenizer
Transformers for Named Entity Recognition
The Anatomy of the Transformers Model Class
Bodies and Heads
Creating a Custom Model for Token Classification
Loading a Custom Model
Tokenizing Texts for NER
Performance Measures
Fine-Tuning XLM-RoBERTa
Error Analysis
Cross-Lingual Transfer
When Does Zero-Shot Transfer Make Sense?
Fine-Tuning on Multiple Languages at Once
Interacting with Model Widgets
Conclusion
5. Text Generation
The Challenge with Generating Coherent Text
Greedy Search Decoding
Beam Search Decoding
Sampling Methods
Top-k and Nucleus Sampling
Which Decoding Method Is Best?
Conclusion
6. Summarization
The CNN/DailyMail Dataset
Text Summarization Pipelines
Summarization Baseline
GPT-2
T5
BART
PEGASUS
Comparing Different Summaries
Measuring the Quality of Generated Text
BLEU
ROUGE
Evaluating PEGASUS on the CNN/DailyMail Dataset
Training a Summarization Model
Evaluating PEGASUS on SAMSum
Fine-Tuning PEGASUS
Generating Dialogue Summaries
Conclusion
7. Question Answering
Building a Review-Based QA System
The Dataset
Extracting Answers from Text
Using Haystack to Build a QA Pipeline
Improving Our QA Pipeline
Evaluating the Retriever
Evaluating the Reader
Domain Adaptation
Evaluating the Whole QA Pipeline
Going Beyond Extractive QA
Conclusion
8. Making Transformers Efficient in Production
Intent Detection as a Case Study
Creating a Performance Benchmark
Making Models Smaller via Knowledge Distillation
Knowledge Distillation for Fine-Tuning
Knowledge Distillation for Pretraining
Creating a Knowledge Distillation Trainer
Choosing a Good Student Initialization
Finding Good Hyperparameters with Optuna
Benchmarking Our Distilled Model
Making Models Faster with Quantization
Benchmarking Our Quantized Model
Optimizing Inference with ONNX and the ONNX Runtime
Making Models Sparser with Weight Pruning
Sparsity in Deep Neural Networks
Weight Pruning Methods
Conclusion
9. Dealing with Few to No Labels
Building a GitHub Issues Tagger
Getting the Data
Preparing the Data
Creating Training Sets
Creating Training Slices
Implementing a Naive Bayesline
Working with No Labeled Data
Working with a Few Labels
Data Augmentation
Using Embeddings as
展開全部
Transformers自然語言處理 修訂版(影印版) 作者簡介
劉易斯·湯斯頓,Lewis Tunstall是Hugging Face的機器學習工程師。他目前的工作重點是為NLP社區開發工具并教人們如何有效地使用這些工具。
書友推薦
- >
山海經
- >
史學評論
- >
我從未如此眷戀人間
- >
月亮與六便士
- >
名家帶你讀魯迅:朝花夕拾
- >
【精裝繪本】畫給孩子的中國神話
- >
自卑與超越
- >
李白與唐代文化
本類暢銷