-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰(zhàn)行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優(yōu)實踐之路
-
>
第一行代碼Android
-
>
JAVA持續(xù)交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
數(shù)學建模:算法與編程實現(xiàn) 版權信息
- ISBN:9787111709794
- 條形碼:9787111709794 ; 978-7-111-70979-4
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
數(shù)學建模:算法與編程實現(xiàn) 本書特色
適讀人群 :高等院校在校學生、數(shù)學建模指導老師本書由哈爾濱工業(yè)大學基礎數(shù)學博士,哈爾濱商業(yè)大學數(shù)學與應用數(shù)學系主任、副教授、應用統(tǒng)計碩導、數(shù)學建模競賽主教練張敬信老師編寫,是一本編程技巧與建模方法高度融合的數(shù)學建模指導手冊。
數(shù)學建模:算法與編程實現(xiàn) 內容簡介
本書定位于夯實數(shù)學建模基礎,采用主流編程方法和簡潔代碼實現(xiàn)常用的數(shù)學建模算法,以案例為導向,圍繞數(shù)學建模知識體系展開。全書分5篇,共11章。前兩章是數(shù)學建模基礎篇,包括數(shù)學建模介紹、數(shù)學建模的一般流程(初等模型)、如何從算法到編程實現(xiàn)(層次分析法與自定義函數(shù));接著按算法板塊組織內容,包括微分方程模型篇(人口模型、傳染病模型)、優(yōu)化模型篇(規(guī)劃模型、投資優(yōu)化策略、優(yōu)化模型進階)、評價模型篇(經(jīng)典評價模型、模糊理論)、預測模型篇(常規(guī)預測模型、時間序列分析)。本書有配套源碼資源和電子課件。 本書可作為高等院校數(shù)學建模的入門教材,也可作為數(shù)學建模指導教師的參考資料,還可作為其他相關行業(yè)人員、科研人員使用數(shù)學模型解決實際問題的參考用書。
數(shù)學建模:算法與編程實現(xiàn) 目錄
數(shù)學建模基礎篇 / 1
第1章 數(shù)學建模概述 / 2
1.1 什么是數(shù)學建模 / 2
1.2 數(shù)學建模算法與實現(xiàn) / 4
1.2.1 數(shù)學建模算法分類 / 4
1.2.2 數(shù)學建模算法實現(xiàn)語言 / 5
1.3 數(shù)學建模的一般流程 / 5
1.3.1 問題提出 / 5
1.3.2 明確問題 / 6
1.3.3 模型假設 / 7
1.3.4 建立模型 / 7
1.3.5 模型求解 / 9
1.3.6 結果分析 / 10
1.3.7 論文寫作 / 13
1.4 數(shù)學建模的應用領域 / 18
1.4.1 能力培養(yǎng) / 18
1.4.2 運籌優(yōu)化 / 19
1.4.3 機器學習 / 20
1.4.4 金融投資 / 22
1.4.5 科學研究 / 23
1.4.6 數(shù)學建模競賽 / 24
思考題1 / 30
第2章 從算法到編程實現(xiàn) / 31
2.1 如何從算法到代碼 / 31
2.2 以層次分析法為例 / 32
2.2.1 AHP算法步驟 / 34
2.2.2 案例:旅游地選擇 / 37
思考題2 / 44
第3章 微分方程模型篇 / 45
人口模型 / 46
3.1 Malthus人口模型 / 46
3.1.1 指數(shù)增長模型 / 46
3.1.2 案例:預測美國人口 / 48
3.2 Logistic人口模型 / 52
3.2.1 阻滯增長模型 / 52
3.2.2 案例:預測電影累計票房 / 55
3.3 Leslie模型 / 59
思考題3 / 63
第4章 傳染病模型 / 64
4.1 SI/SIS模型 / 65
4.1.1 SI模型 / 65
4.1.2 SIS模型 / 68
4.2 SIR模型 / 72
4.2.1 模型建立 / 72
4.2.2 模型求解 / 73
4.3 艙室模型 / 76
4.3.1 艙室模型建模方法 / 76
4.3.2 SEIR模型 / 77
4.4 案例:SARS的傳播規(guī)律 / 79
4.4.1 時變SIR模型 / 79
4.4.2 模型求解 / 80
思考題4 / 86
優(yōu)化模型篇 / 87
第5章 規(guī)劃模型 / 89
5.1 線性規(guī)劃 / 91
5.1.1 線性規(guī)劃模型 / 91
5.1.2 案例:生產計劃問題建模 / 93
5.2 (混合)整數(shù)規(guī)劃 / 98
5.2.1 (混合)整數(shù)規(guī)劃模型 / 98
5.2.2 運輸問題兼談Lingo語法 / 99
5.2.3 案例:生產與存儲問題 / 103
5.3 非線性規(guī)劃 / 105
5.4 目標規(guī)劃 / 109
思考題5 / 113
第6章 投資優(yōu)化策略 / 115
6.1 二次規(guī)劃 / 115
6.2 多目標規(guī)劃 / 117
6.3 馬科維茨均值-方差模型 / 121
6.3.1 基本的投資組合 / 122
6.3.2 雙目標的帕累托尋優(yōu) / 126
思考題6 / 128
第7章 優(yōu)化模型進階 / 129
7.1 優(yōu)化建模技術 / 129
7.1.1 處理特殊目標函數(shù) / 129
7.1.2 處理特殊約束 / 132
7.1.3 分段線性函數(shù)建模 / 133
7.2 案例:露天礦生產車輛安排 / 134
7.2.1 問題分析與假設 / 136
7.2.2 基于整數(shù)規(guī)劃的*優(yōu)調運方案 / 137
7.2.3 *優(yōu)調運方案下的派車計劃 / 143
7.2.4 多目標規(guī)劃模型的序貫解法 / 146
思考題7 / 149
評價模型篇 / 150
第8章 經(jīng)典評價模型 / 152
8.1 數(shù)據(jù)指標預處理 / 152
8.1.1 指標的一致性處理 / 152
8.1.2 指標的無量綱化處理 / 154
8.1.3 定性指標的量化 / 156
8.2 主客觀賦權法 / 158
8.2.1 層次分析法 / 158
8.2.2 熵權法 / 159
8.2.3 主成分法 / 160
8.2.4 動態(tài)加權法 / 163
8.3 理想解法 / 165
8.3.1 算法原理 / 165
8.3.2 案例:河流水質評價 / 167
8.4 數(shù)據(jù)包絡分析 / 168
8.4.1 DEA相關概念 / 169
8.4.2 CCR模型 / 170
8.4.3 BCC模型 / 174
8.4.4 帶非期望產出的SBM模型 / 176
思考題8 / 178
第9章 模糊理論 / 179
9.1 模糊理論基礎 / 180
9.1.1 模糊集與隸屬函數(shù) / 180
9.1.2 模糊運算 / 184
9.2 模糊綜合評價 / 186
9.2.1 算法步驟 / 186
9.2.2 案例:耕作方案模糊評價 / 188
9.3 灰色關聯(lián)分析 / 197
9.3.1 算法原理 / 197
9.3.2 案例:運動員訓練與成績 / 198
9.3.3 優(yōu)勢分析 / 200
9.3.4 灰色關聯(lián)評價 / 201
思考題9 / 202
預測模型篇 / 203
第10章 常規(guī)預測模型 / 204
10.1 線性回歸 / 204
10.1.1 一元線性回歸 / 204
10.1.2 多元線性回歸 / 207
10.1.3 回歸模型檢驗 / 208
10.1.4 案例:銷售利潤預測 / 213
10.2 線性回歸進階 / 221
10.2.1 梯度下降法 / 221
10.2.2 非線性回歸 / 225
10.2.3 逐步回歸 / 231
10.3 廣義線性模型 / 233
10.3.1 Logistic回歸及案例 / 234
10.3.2 泊松回歸 / 237
10.4 灰色預測 / 239
10.4.1 GM(1,1)模型 / 240
10.4.2 案例:SARS疫情對旅游業(yè)的影響 / 244
思考題10 / 247
第11章 時間序列分析 / 248
11.1 預備知識 / 249
11.1.1 差分與延遲 / 249
11.1.2 平穩(wěn)性 / 249
11.1.3 時間序列分析的一般步驟 / 252
11.2 確定性分解 / 253
11.2.1 確定性分解算法 / 253
11.2.2 案例:出口額數(shù)據(jù)確定性分解建模 / 253
11.3 指數(shù)平滑法 / 255
11.3.1 簡單
數(shù)學建模:算法與編程實現(xiàn) 作者簡介
張敬信,哈爾濱工業(yè)大學基礎數(shù)學博士,現(xiàn)為哈爾濱商業(yè)大學數(shù)學與應用數(shù)學系主任、副教授、應用統(tǒng)計碩導、數(shù)學建模主教練。主研方向為數(shù)學建模、數(shù)據(jù)挖掘等,熱愛編程、擅長R語言。常駐知乎平臺,粉絲7萬+。發(fā)表SCI論文4篇,主持黑龍江省哲學社科項目1項,黑龍江省教育廳科技項目1項。
- >
煙與鏡
- >
我與地壇
- >
山海經(jīng)
- >
詩經(jīng)-先民的歌唱
- >
中國人在烏蘇里邊疆區(qū):歷史與人類學概述
- >
月亮與六便士
- >
隨園食單
- >
大紅狗在馬戲團-大紅狗克里弗-助人