包郵 智慧地鐵車站系統(tǒng):數(shù)據(jù)科學(xué)與工程:data science and engineering:英文版
-
>
公路車寶典(ZINN的公路車維修與保養(yǎng)秘籍)
-
>
晶體管電路設(shè)計(下)
-
>
基于個性化設(shè)計策略的智能交通系統(tǒng)關(guān)鍵技術(shù)
-
>
花樣百出:貴州少數(shù)民族圖案填色
-
>
山東教育出版社有限公司技術(shù)轉(zhuǎn)移與技術(shù)創(chuàng)新歷史叢書中國高等技術(shù)教育的蘇化(1949—1961)以北京地區(qū)為中心
-
>
鐵路機(jī)車概要.交流傳動內(nèi)燃.電力機(jī)車
-
>
利維坦的道德困境:早期現(xiàn)代政治哲學(xué)的問題與脈絡(luò)
智慧地鐵車站系統(tǒng):數(shù)據(jù)科學(xué)與工程:data science and engineering:英文版 版權(quán)信息
- ISBN:9787548747864
- 條形碼:9787548747864 ; 978-7-5487-4786-4
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>>
智慧地鐵車站系統(tǒng):數(shù)據(jù)科學(xué)與工程:data science and engineering:英文版 內(nèi)容簡介
智慧地鐵專注于鐵路系統(tǒng)的新概念和新模式,是數(shù)據(jù)科學(xué)與工程的跨學(xué)科研究。智慧地鐵車站系統(tǒng)基于車站中的全息感知,終端平臺控制和高度自治的操作。它提供實(shí)時的自主服務(wù)和車站服務(wù)設(shè)施的監(jiān)控以實(shí)現(xiàn)車站設(shè)備、環(huán)境和乘客的智能管理。智慧地鐵是一個新興的領(lǐng)域。本書介紹智慧地鐵車站系統(tǒng)中數(shù)據(jù)科學(xué)和工程學(xué)的關(guān)鍵技術(shù),并將其分為三個部分,包括環(huán)境、人類和能源。本書介紹智慧地鐵車站系統(tǒng)中數(shù)據(jù)科學(xué)和工程學(xué)的*新技術(shù)。。本書可以為研究人員提供重要參考,并鼓勵以后在智慧地鐵、智能鐵路、數(shù)據(jù)科學(xué)與工程、人工智能和其他相關(guān)領(lǐng)域進(jìn)行后續(xù)研究。本書與愛思唯爾聯(lián)合出版。
智慧地鐵車站系統(tǒng):數(shù)據(jù)科學(xué)與工程:data science and engineering:英文版 目錄
1.1 Overview of data science and engineering
1.2 Framework of smart metro station systems
1.3 Human and smart metro station systems
1.4 Environment and smart metro station systems
1.5 Energy and smart metro station systems
1.6 Scope of this book
References
Chapter 2 Metro traffic flow monitoring and passenger guidance
2.1 Introduction
2.2 Description of metro traffic flow data
2.3 Prediction of metro traffic flow based on Elman neural network
2.4 Prediction of metro traffic flow based on deep echo state network
2.5 Passenger guidance strategy based on prediction results
2.6 Conclusions
References
Chapter 3 Individual behavior analysis and trajectory prediction
3.1 Introduction
3.2 Description of individual GPS data
3.3 Preprocessing of individual GPS data
3.4 Prediction of GPS trajectory based on optimized extreme learning machine
3.5 Prediction of GPS trajectory based on optimized support vector machine
3.6 Analysis of individual behavior based on prediction results
3.7 Conclusions
References
Chapter 4 Clustering and anomaly detection of crowd hotspot regions
4.1 Introduction
4.2 Description of crowd GPS data
4.3 Preprocessing of crowd GPS data
4.4 Clustering of crowd hotspot regions based on K-means
4.5 Clustering of crowd hotspot regions based on DBSCAN
4.6 Anomaly detection of crowd hotspot regions based on Markov chain
4.7 Conclusions
References
Chapter 5 Monitoring and deterministic prediction of station humidity
5.1 Introduction
5.2 Description of station humidity data
5.3 Deterministic prediction of station humidity based on optimization ensemble
5.4 Deterministic prediction of station humidity based on stacking ensemble
5.5 Evaluation of deterministic prediction results
5.6 Conclusions
References
Chapter 6 Monitoring and probabilistic prediction of station temperature
6.1 Introduction
6.2 Description of station temperature data
6.3 Interval prediction of station temperature based on quantile regression
6.4 Interval prediction of station temperature based on kernel density estimation
6.5 Evaluation of probabilistic prediction results
6.6 Conclusions
References
Chapter 7 Monitoring and spatial prediction of multi-dimensional air pollutants
7.1 Introduction
7.2 Description of multi-dimensional air pollutants data
7.3 Dimensionality reduction of multi-dimensional air pollutants data
7.4 Spatial prediction of air pollutants based on Long Short-Term Memory
7.5 Evaluation of spatial prediction results
7.6 Conclusions
References
Chapter 8 Time series feature extraction and analysis of metro load
8.1 Introduction
8.2 Description of metro load data
8.3 Feature extraction of metro load based on statistical methods
8.4 Feature extraction of metro load based on transform methods
8.5 Feature extraction of metro load based on model
8.6 Conclusions
References
Chapter 9 Characteristic and correlation analysis of metro load
9.1 Introduction
9.2 The theoretical basis of correlation analysis
9.3 Description of metro load data
9.4 Correlation analysis of metro load and environment data
9.5 Correlation analysis of metro load and operation data
9.6 Comprehensive correlation ranking of metro load and related data
9.7 Conclusions
References
Chapter 10 Metro load prediction and intelligent ventilation control
10.1 Introduction
10.2 Description of short-term and long-term metro load data
10.3 Short-term prediction of metro load data based on ANFIS model
10.4 Long-term prediction of metro load data based on SARIMA model
10.5 Performance evaluation of prediction results
10.6 Intelligent ventilation control based on prediction results
10.7 Conclusions
References
智慧地鐵車站系統(tǒng):數(shù)據(jù)科學(xué)與工程:data science and engineering:英文版 作者簡介
劉輝,現(xiàn)任中南大學(xué)二級教授、博導(dǎo)、交通院副院長。 主要研究方向?yàn)檐壍澜煌ㄅc人工智能。獲中德雙博士學(xué)位(交通運(yùn)輸工程/自動化工程)、德國教授文憑。入選國家萬人計劃青年拔尖人才、全球2%頂尖科學(xué)家榜單、愛思唯爾中國高被引學(xué)者。 獲國家科技進(jìn)步獎一等獎(排15)、教育部自然科學(xué)獎二等獎(排1)、中國交通運(yùn)輸協(xié)會科技進(jìn)步獎一等獎(排1)等;獲施普林格-自然“中國新發(fā)展獎”、中國智能交通協(xié)會科技領(lǐng)軍人才獎、中國交通運(yùn)輸協(xié)會首屆青年獎、湖南省青年科技獎、寶鋼優(yōu)秀教師獎等。
- >
中國歷史的瞬間
- >
自卑與超越
- >
隨園食單
- >
小考拉的故事-套裝共3冊
- >
詩經(jīng)-先民的歌唱
- >
苦雨齋序跋文-周作人自編集
- >
經(jīng)典常談
- >
企鵝口袋書系列·偉大的思想20:論自然選擇(英漢雙語)