中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
Python深度學習算法實踐(影印版) 版權信息
- ISBN:9787564189693
- 條形碼:9787564189693 ; 978-7-5641-8969-3
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
Python深度學習算法實踐(影印版) 內容簡介
本書深入淺出地剖析了深度學習的原理和相關技術。書中使用Python,從基本的數學知識出發,帶領讀者從零創建一個經典的深度學習網絡,使讀者在此過程中逐步理解深度學習。書中不僅介紹了深度學習和神經網絡的概念、特征等基礎知識,對誤差反向傳播法、卷積神經網絡等也有深入講解,此外還介紹了深度學習相關的實用技巧,自動駕駛、圖像生成、強化學習等方面的應用,以及為什么加深層可以提高識別精度等疑難的問題。
Python深度學習算法實踐(影印版) 目錄
Preface
Section 1" Getting Started with Deep Learning
Chapter 1: Introduction to Deep Learning
What is deep learning?
Biological and artificial neurons
ANN and its layers
Input layer
Hidden layer
Output layer
Exploring activation functions
The sigmoid function
The tanh function
The Rectified Linear Unit function
The leaky ReLU function
The Exponential linear unit function
The Swish function
The softmax function
Forward propagation in ANN
How does ANN learn?
Debugging gradient descent with gradient checking
Putting it all together
Building a neural network from scratch
Summary
Questions
Further reading
Chapter 2: Getting to Know TensorFIow
What is TensorFIow?
Understanding computational graphs and sessions
Sessions
Variables, constants, and placeholders
Variables
Constants
Placeholders and feed dictionaries
Introducing TensorBoard
Creating a name scope
Handwritten digit classification using TensorFIow
Importing the required libraries
Loading the dataset
Defining the number of neurons in each layer
Defining placeholders
Forward propagation
Computing loss and backpropagation
Computing accuracy
Creating summary
Training the model
Visualizing graphs in TensorBoard
Introducing eager execution
Math operations in TensorFIow
TensorFIow 2.0 and Keras
Bonjour Keras
Defining the model
Defining a sequential model
Defining a functional model
Compiling the model
Training the model
Evaluating the model
MNIST digit classification using TensorFIow 2.0
Should we use Keras or TensorFIow?
Summary
Questions
Further reading
Section 2: Fundamental Deep Learning Algorithms
Chapter 3: Gradient Descent and Its Variants
Demystifying gradient descent
Performing gradient descent in regression "
Importing the libraries
Preparing the dataset
Defining the loss function
Computing the gradients of the loss function
Updating the model parameters
Gradient descent versus stochastic gradient descent
Momentum-based gradient descent
Gradient descent with momentum
Nesterov accelerated gradient
Adaptive methods of gradient descent
Setting a learning rate adaptively using Adagrad
Doing away with the learning rate using Adadelta
Overcoming the limitations of Adagrad using RMSProp
Adaptive moment estimation
Adamax - Adam based on infinity-norm
Adaptive moment estimation with AMSGrad
……
Section 3 Advanced Deep Learning Algorithms
展開全部
書友推薦
- >
中國歷史的瞬間
- >
李白與唐代文化
- >
二體千字文
- >
巴金-再思錄
- >
姑媽的寶刀
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
有舍有得是人生
- >
推拿
本類暢銷