中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
實用時間序列分析(影印版)

包郵 實用時間序列分析(影印版)

作者:AileenNielsen
出版社:東南大學出版社出版時間:2020-06-01
開本: 其他 頁數: 480
中 圖 價:¥88.5(7.5折) 定價  ¥118.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

實用時間序列分析(影印版) 版權信息

  • ISBN:9787564188955
  • 條形碼:9787564188955 ; 978-7-5641-8895-5
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

實用時間序列分析(影印版) 內容簡介

隨著物聯網、數字醫療、智慧城市的興起,時間序列數據分析變得越來越重要,持續監測和數據收集變得越來越普遍,對通過統計和機器學習技術進行時間序列分析的需求將會增長。

實用時間序列分析(影印版) 目錄

Preface
1.TimeSeries:AnOverviewand aQuickHistory
The History of Time Series in Diverse Applications
Medicine as a Time Series Problem
Forecasting Weather
Forecasting Economic Growth
Astronomy
Time Series Analysis Takes Off
The Origins of Statistical Time Series Analysis
The Origins of Machine Learning Time Series Analysis
More Resources

2.FindingandWranglingTimeSeriesData
where to Find Time Series Data
Prepared Data Sets
Found Time Series
Retrofitting a Time Series Data Collection from a Collection of Tables
A Worked Example:Assembling a Time Series Data Collection
Constructing a Found Time Series
Timestamping Troubles
Whose Timestamp
Guesstimating Timestamps to Make Sense of Data
What’s a Meaningful Time Scale
Cleaning Your Data
Handling Missing Data
Upsampling and Downsampling
Smoothing Data
Seasonal Data
Time Zones
Preventing Lookahead
More Resources

3.ExploratoryDataAnalysisforTimeSeries
Familiar Methods
Plotting
Histograms
Scatter Plots
Time Series-Specific Exploratory Methods
Understanding Stationarity
Applying Window Functions
Understanding and Identifying Self-Correlation
Spurious Correlations
Some Useful Visualizations
lD Visualizations
2D Visualizations
3D Visualizations
More Resources

4.SimulatingTimeSeriesData
What’S Special About Simulating Time Series
Simulation Versus Forecasting
Simulations in Code
Doing the Work Yourself
Building a Simulation Universe That Runs Itself
A Physics Simulation
Final Notes on Simulations
Statistical Simulations
Deep Learning Simulations
More Resources

5.StoringTemporalData
Defining Requirements
Live Data Versus Stored Data
Database Solutions
SQL Versus NoSQL
Popular Time Series Database and File Solutions
File Solutions
NumPv
Pandas
Standard R Equivalents
Xarray
More Resources

6.StatisticaIModelsforTimeSeries
Why Not Use a Linear Regression
Statistical Methods Developed for Time Series
Autoregressive Models
Moving Average Models
Autoregressive Integrated Moving Average Models
Vector Autoregression
Variations on Statistical Models
Advantages and Disadvantages of Statistical Methods for Time Series
More Resources

7.StateSpaceModels for TimeSeries
State Space Models:Pluses and Minuses
The Kalman Filter
Overview
CodefortheKalmanFilter、
Hidden Markov Modds
HOW the Model Works
HOWWeFittheModel
Fitting an HMM in Code
Bayesian Structural Time Series
Code forbsts
More Resources

8.Generating and Selecting FeaturesforaTimeSeries
Introductory Example
General Considerations When Computing Features
The Nature of the Time Series
Domain Knowledge
External Considerations
A Catalog of Places to Find Features for Inspiration
Open Source Time Series Feature Generation Libraries
Domain-Specific Feature Examples
How to Select Features 0nce You Have Generated Them
Concluding Thoughts
More Resources

9.Machine LearningforTime Series
Time Series C:lassification
Selecting and Generating Features
Decision Tree Methods
Clustering
Generating Features from the Data
TemporaUy Aware Distance Metrics
Clustering Code
More Resources

10.Deep LearningforTimeSeries
Deep Learning Concepts
Programming a Neural Network
Data,Symbols,Operations,Layers,and Graphs
Building a Training Pipeline
Inspecting Our Data Set
Steps of a Training Pipeline
Feed Forward Networks
A Simple Example
Using an Attention Mechanism to Make Feed Forward
Networks More Time—Aware
CNNS
A Simple Convolutional Model
Alternative Convolutional Models
RNNS
Continuing Our Electric Example
The Autoencoder Innovation
Combination Architectures
Summing Up
More Resources

11.Measuring Error
The Basics:HoW to Test Forecasts
Model-Specific Considerations for Backtesting
When Is Your Forecast Good Enough
Estimating Uncertainty in Your Model with a Simulation
Predicting Multiple Steps Ahead
Fit Directlv to the Horizon of Interest
Recursive Approach to Distant Temporal Horizons
Multitask Learning Applied to Time Series
Model Validation Gotchas
More Resources

1 2.Performance Considerations in Fitting and Serving Time Series Models
Working with Tools Built for More General Use Cases
Models Built for Cross.Sectional Data Don't Share”Data Across Samples
Models That Don’t Precompute Create Unnecessary Lag Between
Measuring Data and Making a Forecast
Data Storage Formats:Pluses and Minuses
Store Your Data in a Binary Format
Preprocess Your Data in a Way That Allows Yon to“Slide”Over It
Modi研ng Your Analysis to Suit Performance Considerations
Using A11 Your Data Is Not Necessarily Better
Complicated Models Don’t Always Do Better Enough
A Brief Mention of Alternative High—Performance Tools
More Resources

13.HealthcareApplications
Predicting the Flu
A Case Study of Flu in 0ne Metropolitan Area
What Is State of the Art in Flu Forecasting
Predicting Blood Glucose Levels
Data Cleaning and Exploration
Generating Features
Fitting a Model
More Resources

14.FinanciaIApplications
Obtaining and Exploring Financial Data
Preprocessing Financial Data for Deep Learning
Adding Quantities of Interest to Our Raw Values
Scaling Quantities of Interest Without a Lookahead
Formatting 0ur Data for a Neural Network
Building and Training an RNN
More Resources

15.TimeSeriesforGovernment
Obtaining Governmental Data
Exploring Big Time Series Data
Upsample and Aggregate the Data as We Iterate Through It
Sort the Data
0nline Statistical Analysis of Time Series Data
Remaining Questions
Further Improvements
More Resources

16.TimeSeriesPackages
Forecasting at Scale
Google’S Industrial In.house Forecasting
Facebook’S Open Source Prophet Package
Anomaly Detection
Twitter’s Open Source AnomalyDetection Package
Other Time Series Packages
More Resources

17.ForecastsAbout Forecasting
Forecasting as a Service
Deep Learning Enhances Probabilistic Possibilities
Increasing Importance of Machine Learning Rather Than Statistics
Increasing Combination of Statistical and Machine Learning Methodologies
More Forecasts for Everyday Life
Index
展開全部

實用時間序列分析(影印版) 作者簡介

  艾琳·尼爾森(Aileen Nielsen),是一名為紐約市服務的軟件工程師和數據分析師。從醫療創業到政治競選,從物理研究實驗室到金融交易公司,她在多個領域從事時間序列研究。她目前正在開發用于預測應用的神經網絡。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 电子万能试验机_液压拉力试验机_冲击疲劳试验机_材料试验机厂家-济南众标仪器设备有限公司 | 飞扬动力官网-广告公司管理软件,广告公司管理系统,喷绘写真条幅制作管理软件,广告公司ERP系统 | 自动气象站_气象站监测设备_全自动气象站设备_雨量监测站-山东风途物联网 | 土壤墒情监测站_土壤墒情监测仪_土壤墒情监测系统_管式土壤墒情站-山东风途物联网 | 物流之家新闻网-最新物流新闻|物流资讯|物流政策|物流网-匡匡奈斯物流科技 | 溶氧传感器-pH传感器|哈美顿(hamilton) | 小学教案模板_中学教师优秀教案_高中教学设计模板_教育巴巴 | 佛山市钱丰金属不锈钢蜂窝板定制厂家|不锈钢装饰线条|不锈钢屏风| 电梯装饰板|不锈钢蜂窝板不锈钢工艺板材厂家佛山市钱丰金属制品有限公司 | 广西资质代办_建筑资质代办_南宁资质代办理_新办、增项、升级-正明集团 | 旗帜网络笔记-免费领取《旗帜网络笔记》电子书| 对辊破碎机_四辊破碎机_双齿辊破碎机_华盛铭重工 | 乐泰胶水_loctite_乐泰胶_汉高乐泰授权(中国)总代理-鑫华良供应链 | 莱州网络公司|莱州网站建设|莱州网站优化|莱州阿里巴巴-莱州唯佳网络科技有限公司 | 称重传感器,测力传感器,拉压力传感器,压力变送器,扭矩传感器,南京凯基特电气有限公司 | 芜湖厨房设备_芜湖商用厨具_芜湖厨具设备-芜湖鑫环厨具有限公司 控显科技 - 工控一体机、工业显示器、工业平板电脑源头厂家 | 冰雕-冰雪世界-大型冰雕展制作公司-赛北冰雕官网 | 志高装潢官网-苏州老房旧房装修改造-二手房装修翻新 | 微波消解仪器_智能微波消解仪报价_高压微波消解仪厂家_那艾 | 空气能采暖,热泵烘干机,空气源热水机组|设备|厂家,东莞高温热泵_正旭新能源 | 大型果蔬切片机-水果冬瓜削皮机-洗菜机切菜机-肇庆市凤翔餐饮设备有限公司 | 上海恒驭仪器有限公司-实验室平板硫化机-小型平板硫化机-全自动平板硫化机 | 北京公积金代办/租房发票/租房备案-北京金鼎源公积金提取服务中心 | 危废处理系统,水泥厂DCS集散控制系统,石灰窑设备自动化控制系统-淄博正展工控设备 | 机房监控|动环监控|动力环境监控系统方案产品定制厂家 - 迈世OMARA | 小型玉石雕刻机_家用玉雕机_小型万能雕刻机_凡刻雕刻机官网 | 上海风淋室_上海风淋室厂家_上海风淋室价格_上海伯淋 | 贴片电容-贴片电阻-二三极管-国巨|三星|风华贴片电容代理商-深圳伟哲电子 | 专业广州网站建设,微信小程序开发,一物一码和NFC应用开发、物联网、外贸商城、定制系统和APP开发【致茂网络】 | sfp光模块,高速万兆光模块工厂-性价比更高的光纤模块制造商-武汉恒泰通 | 尚为传动-专业高精密蜗轮蜗杆,双导程蜗轮蜗杆,蜗轮蜗杆减速机,蜗杆减速机生产厂家 | 高压微雾加湿器_工业加湿器_温室喷雾-昌润空气净化设备 | BOE画框屏-触摸一体机-触控查询一体机-触摸屏一体机价格-厂家直销-触发电子 | 罗氏牛血清白蛋白,罗氏己糖激酶-上海嵘崴达实业有限公司 | 液压升降平台_剪叉式液压/导轨式升降机_传菜机定做「宁波日腾升降机厂家」 | 光环国际-新三板公司_股票代码:838504 | 上海软件开发-上海软件公司-软件外包-企业软件定制开发公司-咏熠科技 | 巨野电机维修-水泵维修-巨野县飞宇机电维修有限公司 | 上海logo设计| PCB厂|线路板厂|深圳线路板厂|软硬结合板厂|电路板生产厂家|线路板|深圳电路板厂家|铝基板厂家|深联电路-专业生产PCB研发制造 | C形臂_动态平板DR_动态平板胃肠机生产厂家制造商-普爱医疗 | 塑胶地板-商用PVC地板-pvc地板革-安耐宝pvc塑胶地板厂家 |