中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數學專題練1200題
-
>
希格斯:“上帝粒子”的發明與發現
-
>
神農架疊層石:10多億年前遠古海洋微生物建造的大堡礁
-
>
聲音簡史
MathematicMonographSerie廣義逆:理論與計算(第2版)(英文版) 版權信息
- ISBN:9787030595645
- 條形碼:9787030595645 ; 978-7-03-059564-5
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
MathematicMonographSerie廣義逆:理論與計算(第2版)(英文版) 內容簡介
英文版著作名稱為GeneralizedInverses:TheoryandComputations,由王國榮、魏益民和喬三正共同翻譯完成。英文版對中文版內容作了適當的刪減,以《矩陣與算子廣義逆》為基礎,補充了1994年以來發表的100多篇論文,可以說是一部新的著作,在靠前出版靠前版(王國榮,魏益民,喬三正,2004年)。受到靠前外同行的關注,SCI刊物LAA也發表了書評。很近他們又增補了多篇新的論文,撰寫了新的兩章:結構矩陣廣義逆;多項式矩陣廣義逆。因此,全書內容更為豐富。不僅適合研究生學習而且可以作為研究人員參考。作為英文版第二版,受到斯普林格的青睞,雙方出版社簽訂聯合出版協議,聯合出版工作已經在進行中,斯普林格計劃2018年年底出版世界發行。
MathematicMonographSerie廣義逆:理論與計算(第2版)(英文版) 目錄
1 Equation Solving Generalized Inverses
1.1 Moore-Penmse Inverse
1.1.1 Definition and Basic Properties of At
1.1.2 Range and Null Space of a Matrix
1.1.3 Full-Rank Factorization
1.1.4 Minimum-Norm Least-Squares Solution
1.2 The {i,j, k} Inverses
1.2.1 The {1} Inverse and the Solution of a Consistent System of Linear Equations
1.2.2 The {1,4} Inverse and the Minimum-Norm Solution of a Consistent System
1.2.3 The {1, 3} Inverse and the Least-Squares Solution of An Inconsistent System
1.2.4 The {1} Inverse and the Solution of the Matrix Equation AX B = D
1.2.5 The {1} Inverse and the Common Solution of Ax = a and Bx = b
1.2.6 The {1} Inverse and the Common Solution of AX = B and XD = E
1.3 The Generalized Inverses With Prescribed Range and Null Space
1.3.1 Idempotent Matrices and Projectors a(1,2)
1.3.2 Generalized Inverse A(1.2)T,S
1.3.3 Urquhart Formula
1.3.4 Generalized Inverse a(2)T,S
1.4 Weighted Moore-Penrose Inverse
1.4.1 Weighted Norm and Weighted Conjugate Transpose Matrix
1.4.2 The {1,4N} Inverse and the Minimum-Norm (N) Solution of a Consistent System of Linear Equations
1.4.3 The {1, 3M} Inverse and the Least-Squares (M) Solution of An Inconsistent System of Linear Equations
1.4.4 Weighted Moore-Penrose Inverse and The Minimum-Norm (N) and Least-Squares (M) Solution of An Inconsistent System of Linear Equations
1.5 Bott-Duffin Inverse and Its Generalization
1.5.1 Bott-Duffin Inverse and the Solution of Constrained Linear Equations
1.5.2 The Necessary and Sufficient Conditions for the Existence of the Bott-Duffin Inverse
1.5.3 Generalized Bott-Duffin Inverse and Its Properties
1.5.4 The Generalized Bott-Duffin Inverse and the Solution of Linear Equations
References
2 Drazin Inverse
2.1 Drazin Inverse
2.1.1 Matrix Index and Its Basic Properties
2.1.2 Drazin Inverse and Its Properties
2.1.3 Core-Nilpotent Decomposition
2.2 Group Inverse
2.2.1 Definition and Properties of the Group Inverse
2.2.2 Spectral Properties of the Drazin and Group Inverses
2.3 W-Weighted Drazin Inverse
References
3 Generalization of the Cramer's Rule and the Minors of the Generalized Inverses
3.1 Nonsingularity of Bordered Matrices
3.1.1 Relations with A MN and A
3.1.2 Relations Between the Nonsingularity of Bordered Matrices and Ad and Ag
3.1.3 Relations Between the Nonsingularity of Bordered Matrices and A(2)T,S,A(l'2)T,S, and A(-1)(L)
3.2 Cramer's Rule for Solutions of Linear Systems
3.2.1 Cramer's Rule for the Minimum-Norm (N) Least-Squares (M) Solution of an Inconsistent System of Linear Equations
3.2.2 Cramer's Rule for the Solution of a Class of Singular Linear Equations
3.2.3 Cramer's Rule for the Solution of a Class of Restricted Linear Equations
3.2.4 An Alternative and Condensed Cramer's Rule for the Restricted Linear Equations
3.3 Cramer's Rule for Solution of a Matrix Equation
3.3.1 Cramer's Rule for the Solution of a Nonsingular Matrix Equation
3.3.2 Cramer's Rule for the Best-Approximate Solution of a Matrix Equation
3.3.3 Cramer's Rule for the Unique Solution of a Restricted Matrix Equation
3.3.4 An Alternative Condensed Cramer's Rule for a Restricted Matrix Equation
3.4 Determinantal Expressions of the Generalized Inverses and Projectors
3.5 The Determinantal Expressions of the Minors of the Generalized Inverses
3.5.1 Minors of the Moore-Penrose Inverse
3.5.2 Minors of the Weighted Moore-Penrose Inverse
3.5.3 Minors of the Group Inverse and Drazin Inverse
3.5.4 Minors of the Generalized Inverse A(2)T,S
References
4 Reverse Order and Forward Order Laws for A(2)T,S
4.1 Introduction
4.2 Reverse Order Law
4.3 Forward Order Law
References
5 Computational Aspects
5.1 Methods Based on the Full Rank Factorization
5.1.1 Row Echelon Forms
5.1.2 Gaussian Elimination with Complete Pivoting
5.1.3 Householder Transformation
5.2 Singular Value Decompositions and (M, N) Singular Value Decompositions
5.2.1 Singular Value Decomposition
5.2.2 (M, N) Singular Value Decomposition
5.2.3 Methods Based on SVD and (M, N) SVD
5.3 Generalized Inverses of Sums and Partitioned Matrices
5.3.1 Moore-Penrose Inverse of Rank-One Modified Matrix
5.3.2 Greville's Method
5.3.3 Cline's Method
5.3.4 Noble's Method
5.4 Embedding Methods
5.4.1 Generalized Inverse as a Limit
5.4.2 Embedding Methods
5.5 Finite Algorithms
References
6 Structured Matrices and Their Generalized Inverses
6.1 Computing the Moore-Penrose Inverse of a Toeplitz Matrix
6.2 Displacement Structure of the Generalized Inverses
References
7 Parallel Algorithms for Computing the Generalized Inverses
7.1 The Model of Parallel Processors
7.1.1 Array Processor
7.1.2 Pipeline Processor
7.1.3 Multiprocessor
7.2 Measures of the Performance of Parallel Algorithms
7.3 Parallel Algorithms
7.3.1 Basic Algorithms
7.3.2 Csanky Algorithms
7.4 Equivalence Theorem
References
8 Perturbation Analysis of the Moore-Penrose Inverse and the Weighted Moore-Penrose Inverse
8.1 Perturbation Bounds
8.2 Continuity
8.3 Rank-Preserving Modification
8.4 Condition Numbers
8.5 Expression for the Perturbation of Weighted Moore-Penrose Inverse
References
9 Perturbation Analysis of the Drazin Inverse and the Group Inverse
9.1 Perturbation Bound for the Drazin Inverse
9.2 Continuity of the Drazin Inverse
9.3 Core-Rank Preserving Modification of Drazin Inverse
9.4 Condition Number of the Drazin Inverse
9.5 Perturbation Bound for the Group Inverse
References
10 Generalized Inverses of Polynomial Matrices
10.1 Introduction
10.2 Moore-Penrose Inverse of a Polynomial Matrix
10.3 Drazin Inverse of a Polynomial Matrix
References
11 Moore-Penrose Inverse of Linear Operators
11.1 Definition and Basic Properties
11.2 Representation Theorem
11.3 Computational Methods
11.3.1 Euler-Knopp Methods
11.3.2 Newton Methods
11.3.3 Hyperpower Methods
11.3.4 Methods Based on Interpolating Function Theory
References
12 Operator Drazin Inverse
12.1 Definition and Basic Properties
12.2 Representation Theorem
12.3 Computational Procedures
12.3.1 Euler-Knopp Method
12.3.2 Newton Method
12.3.3 Limit Expression
12.3.4 Newton Interpolation
12.3.5 Hermite Interpolation
12.4 Perturbation Bound
12.5 Weighted Drazin Inverse of an Operator
12.5.1 Computational Methods
12.5.2 Perturbation Analysis
References
Index
展開全部
書友推薦
- >
二體千字文
- >
羅庸西南聯大授課錄
- >
史學評論
- >
有舍有得是人生
- >
推拿
- >
經典常談
- >
唐代進士錄
- >
月亮虎
本類暢銷