-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
Python金融數據分析 版權信息
- ISBN:9787111589983
- 條形碼:9787111589983 ; 978-7-111-58998-3
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
Python金融數據分析 本書特色
本書將介紹股票、期權、利率衍生品等金融工具定價方法,如何根據市場指數進行大數據分析,以及如何使用NoSQL存儲tick數據,可解決建模、交易策略優化和風險管理等金融領域的復雜問題。本書面向本科生、研究生、算法開發的初學者以及使用Python進行定量研究的金融領域軟件開發人員。你無需精通Python,熟悉其基本使用情況即可。
Python金融數據分析 內容簡介
本書將介紹股票、期權、利率衍生品等金融工具定價方法,如何根據市場指數進行大數據分析,以及如何使用NoSQL存儲tick數據,可解決建模、交易策略優化和風險管理等金融領域的復雜問題。本書面向本科生、研究生、算法開發的初學者以及使用Python進行定量研究的金融領域軟件開發人員。你無需精通Python,熟悉其基本使用情況即可。
Python金融數據分析 目錄
前言
第1章Python在金融中的應用
1.1Python適合我嗎
1.1.1免費 開源
1.1.2高級、強大、靈活的編程語言
1.1.3豐富的標準庫
1.2面向對象編程與函數式編程
1.2.1面向對象式方法
1.2.2函數式方法
1.2.3我該使用哪種方法
1.3我該使用哪個版本的Python
1.4IPython簡介
1.4.1安裝IPython
1.4.2使用pip
1.4.3IPython Notebook
1.4.4Notebook單元格
1.4.5IPython Notebook簡單的練習
1.4.6Notebook與金融
1.5總結
第2章金融中的線性問題
2.1資本資產定價模型與證券市場線
2.2套利定價模型
2.3因子模型的多元線性回歸
2.4線性*優化
2.4.1安裝PuLP
2.4.2一個簡單的線性優化問題
2.4.3線性規劃的結果
2.4.4整數規劃
2.5使用矩陣解線性方程組
2.6LU分解
2.7Cholesky分解
2.8QR分解
2.9總結
第3章非線性與金融
3.1非線性建模
3.2非線性模型舉例
3.2.1隱含波動率模型
3.2.2馬爾可夫機制轉換模型
3.2.3門限自回歸模型
3.2.4平滑轉換模型
3.3非線性模型求根算法概述
3.4增量法
3.5二分法
3.6牛頓迭代法
3.7割線法
3.8求根法的結合使用
3.9利用SciPy求解
3.9.1SciPy求根標量函數
3.9.2通用非線性求解器
3.10總結
第4章利用數值方法為衍生品定價
4.1什么是期權
4.2二叉樹期權定價模型
4.2.1歐式期權定價
4.2.2編寫StockOption類
4.2.3編寫BinomialEuropeanOption類
4.2.4利用BinomialTreeOption類給美式期權定價
4.2.5CoxRossRubinstein模型
4.2.6LeisenReimer模型
4.3希臘值
4.4三叉樹期權定價模型
4.5期權定價中的Lattice方法
4.5.1二叉樹網格
4.5.2編寫BinomialCRROption類
4.5.3三叉樹網格
4.6有限差分法
4.6.1顯式方法
4.6.2隱式方法
4.6.3CrankNicolson方法
4.6.4奇異障礙期權定價
4.6.5美式期權定價的有限差分
4.7隱含波動率模型
4.8總結
第5章利率及其衍生工具
5.1固定收益證券
5.2收益率曲線
5.3無息債券
5.4自助法構建收益率曲線
5.5遠期利率
5.6計算到期收益率
5.7計算債券定價
5.8久期
5.9凸度
5.10短期利率模型
5.10.1Vasicek模型
5.10.2CoxIngersollRoss模型
5.10.3Rendleman and Bartter模型
5.10.4Brennan and Schwartz模型
5.11債券期權
5.11.1可贖回債券
5.11.2可回售債券
5.11.3可轉換債券
5.11.4優先股
5.12可贖回債券定價
5.12.1Vasicek模型定價無息債券
5.12.2提前行權定價
5.12.3有限差分策略迭代法
5.12.4可贖回債券定價的其他影響因素
5.13總結
第6章利用Python分析歐洲斯托克 50指數波動率
6.1波動率指數衍生品
6.1.1STOXX與歐洲期貨交易所
6.1.2EURO STOXX 50指數
6.1.3VSTOXX
6.1.4VIX
6.2獲取EUROX STOXX 50指數和VSTOXX數據
6.3數據合并
6.4SX5E與V2TX的財務分析
6.5SX5E與V2TX的相關性
6.6計算VSTOXX子指數
6.6.1獲取OESX數據
6.6.2計算VSTOXX子指數的公式
6.6.3VSTOXX子指數值的實現
6.6.4分析結果
6.7計算VSTOXX主指數
6.8總結
第7章大數據分析
7.1什么是大數據
7.2Hadoop
7.2.1HDFS
7.2.2YARN
7.2.3MapReduce
7.3大數據工具對我來說實用嗎
7.4獲取Apache Hadoop
7.4.1從Cloudera獲取QuickStart VM
7.4.2獲取VirtualBox
7.4.3在VirtualBox上運行Cloudera VM
7.5Hadoop中的字計數程序
7.5.1下載示例數據
7.5.2map程序
7.5.3reduce程序
7.5.4測試腳本
7.5.5在Hadoop上運行MapReduce
7.5.6使用Hue瀏覽HDFS
7.6Hadoop的金融實踐
7.6.1從Yahoo! Finance獲取IBM股票價格
7.6.2修改map程序
7.6.3使用IBM股票價格測試map程序
7.6.4運行MapReduce計算日內價格變化
7.6.5分析MapReduce結果
7.7NoSQL簡介
7.7.1獲取MongoDB
7.7.2創建數據目錄并運行MongoDB
7.7.3獲取PyMongo
7.7.4運行測試連接
7.7.5獲取數據庫
7.7.6獲取集合
7.7.7插入文檔
7.7.8獲取單個文檔
7.7.9刪除文檔
7.7.10批量插入文檔
7.7.11統計集合文檔
7.7.12查找文檔
7.7.13文檔排序
7.7.14結論
7.8總結
第8章算法交易
8.1什么是算法交易
8.2帶有公共API的交易平臺列表
8.3有沒有*好的編程語言
8.4系統功能
8.5通過Interactive Brokers和IbPy進行算法交易
8.5.1獲取Interactive Brokers的Trader WorkStation
8.5.2獲取IbPy——IB API包裝器
8.5.3指令路由機制
8.6構建均值回歸算法交易系統
8.6.1設置主程序
8.6.2處理事件
8.6.3實現均值回歸算法
8.6.4跟蹤頭寸
8.7使用OANDA API進行外匯交易
8.7.1什么是REST
8.7.2設置OANDA賬戶
8.7.3OANDA API使用方法
8.7.4獲取oandapy——OAND AREST API包裝器
8.7.5獲取并解析匯率數據
8.7.6發送指令
8.8構建趨勢跟蹤外匯交易平臺
8.8.1設置主程序
8.8.2處理事件
8.8.3實現趨勢跟蹤算法
8.8.4跟蹤頭寸
8.9風險價值模型
8.10總結
第9章回溯測試
9.1回溯測試概述
9.1.1回溯測試的缺陷
9.1.2事件驅動回溯測試系統
9.2設計并實施回溯測試系統
9.2.1TickData類
9.2.2MarketData類
9.2.3MarketDataSource類
9.2.4Order類
9.2.5Position類
9.2.6Strategy類
9.2.7MeanRe
Python金融數據分析 作者簡介
馬偉明(James Ma Weiming),畢業于伊利諾理工大學斯圖爾特商學院,獲得金融學碩士學位。他編寫了大量高頻、低延時的開放源代碼程序和工具。 在獲得新加坡南洋理工大學計算機工程學士學位和南洋理工學院信息技術專業畢業證書后,James開始在新加坡工作。他從事過外匯和固定收益產品交易,還為一家基金銷售平臺開發移動應用程序。
- >
名家帶你讀魯迅:朝花夕拾
- >
姑媽的寶刀
- >
莉莉和章魚
- >
煙與鏡
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
回憶愛瑪儂
- >
名家帶你讀魯迅:故事新編
- >
人文閱讀與收藏·良友文學叢書:一天的工作