中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
數字圖像處理-(第三版)-英文版

包郵 數字圖像處理-(第三版)-英文版

出版社:電子工業出版社出版時間:2017-01-01
開本: 32開 頁數: 976
讀者評分:4分1條評論
本類榜單:教材銷量榜
中 圖 價:¥58.9(6.6折) 定價  ¥89.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

數字圖像處理-(第三版)-英文版 版權信息

數字圖像處理-(第三版)-英文版 本書特色

本書是關于數字圖像處理的經典著作,作者在對32個國家的134所院校和研究所的教師、學生及自學者進行廣泛調查的基礎上編寫了第三版。除保留第二版的大部分主要內容外,還根據收集的建議從13個方面進行了修訂,新增了400多幅圖像、200多個圖表和80多道習題,同時融入了近年來本科學領域的重要發展,使本書具有鮮明的特色與時效性。全書共分12章,包括緒論、數字圖像基礎、灰度變換與空間濾波、頻域濾波、圖像復原與重建、彩色圖像處理、小波及多分辨率處理、圖像壓縮、形態學圖像處理、圖像分割、表現與描述、目標識別。

數字圖像處理-(第三版)-英文版 內容簡介

本書是數字圖像處理的經典教材,內容涵蓋數字圖像基礎、灰度變換與空間濾波、頻率域濾波、圖像復原與重建、彩色圖像處理、小波和多分辨率處理、圖像壓縮、形態學圖像處理、圖像分割、表示與描述、目標識別等,全球近700所高校采用為教材。

數字圖像處理-(第三版)-英文版 目錄

Preface 15
Acknowledgments 19
The Book Web Site 20
About the Authors 21

Chapter 1 Introduction 23
1.1 What Is Digital Image Processing? 23
1.2 The Origins of Digital Image Processing 25
1.3 Examples of Fields that Use Digital Image Processing 29
1.3.1 Gamma-Ray Imaging 30
1.3.2 X-Ray Imaging 31
1.3.3 Imaging in the Ultraviolet Band 33
1.3.4 Imaging in the Visible and Infrared Bands 34
1.3.5 Imaging in the Microwave Band 40
1.3.6 Imaging in the Radio Band 42
1.3.7 Examples in which Other Imaging Modalities Are Used 42
1.4 Fundamental Steps in Digital Image Processing 47
1.5 Components of an Image Processing System 50
Summary 53
References and Further Reading 53

Chapter 2 Digital Image Fundamentals 57
2.1 Elements of Visual Perception 58
2.1.1 Structure of the Human Eye 58
2.1.2 Image Formation in the Eye 60
2.1.3 Brightness Adaptation and Discrimination 61
2.2 Light and the Electromagnetic Spectrum 65
2.3 Image Sensing and Acquisition 68
2.3.1 Image Acquisition Using a Single Sensor 70
2.3.2 Image Acquisition Using Sensor Strips 70
2.3.3 Image Acquisition Using Sensor Arrays 72
2.3.4 A Simple Image Formation Model 72
2.4 Image Sampling and Quantization 74
2.4.1 Basic Concepts in Sampling and Quantization 74
2.4.2 Representing Digital Images 77
2.4.3 Spatial and Intensity Resolution 81
2.4.4 Image Interpolation 87
2.5 Some Basic Relationships between Pixels 90
2.5.1 Neighbors of a Pixel 90
2.5.2 Adjacency, Connectivity, Regions, and Boundaries 90
2.5.3 Distance Measures 93
2.6 An Introduction to the Mathematical Tools Used in Digital Image Processing 94
2.6.1 Array versus Matrix Operations 94
2.6.2 Linear versus Nonlinear Operations 95
2.6.3 Arithmetic Operations 96
2.6.4 Set and Logical Operations 102
2.6.5 Spatial Operations 107
2.6.6 Vector and Matrix Operations 114
2.6.7 Image Transforms 115
2.6.8 Probabilistic Methods 118
Summary 120
References and Further Reading 120
Problems 121

Chapter 3 Intensity Transformations and Spatial Filtering 126
3.1 Background 127
3.1.1 The Basics of Intensity Transformations and Spatial Filtering 127
3.1.2 About the Examples in This Chapter 129
3.2 Some Basic Intensity Transformation Functions 129
3.2.1 Image Negatives 130
3.2.2 Log Transformations 131
3.2.3 Power-Law (Gamma) Transformations 132
3.2.4 Piecewise-Linear Transformation Functions 137
3.3 Histogram Processing 142
3.3.1 Histogram Equalization 144
3.3.2 Histogram Matching (Specification) 150
3.3.3 Local Histogram Processing 161
3.3.4 Using Histogram Statistics for Image Enhancement 161
3.4 Fundamentals of Spatial Filtering 166
3.4.1 The Mechanics of Spatial Filtering 167
3.4.2 Spatial Correlation and Convolution 168
3.4.3 Vector Representation of Linear Filtering 172
3.4.4 Generating Spatial Filter Masks 173
3.5 Smoothing Spatial Filters 174
3.5.1 Smoothing Linear Filters 174
3.5.2 Order-Statistic (Nonlinear) Filters 178
3.6 Sharpening Spatial Filters 179
3.6.1 Foundation 180
3.6.2 Using the Second Derivative for Image Sharpening-The Laplacian 182
3.6.3 Unsharp Masking and Highboost Filtering 184
3.6.4 Using First-Order Derivatives for (Nonlinear) Image Sharpening—The Gradient 187
3.7 Combining Spatial Enhancement Methods 191
3.8 Using Fuzzy Techniques for Intensity Transformations and Spatial Filtering 195
3.8.1 Introduction 195
3.8.2 Principles of Fuzzy Set Theory 196
3.8.3 Using Fuzzy Sets 200
3.8.4 Using Fuzzy Sets for Intensity Transformations 208
3.8.5 Using Fuzzy Sets for Spatial Filtering 211
Summary 214
References and Further Reading 214
Problems 215

Chapter 4 Filtering in the Frequency Domain 221
4.1 Background 222
4.1.1 A Brief History of the Fourier Series and Transform 222
4.1.2 About the Examples in this Chapter 223
4.2 Preliminary Concepts 224
4.2.1 Complex Numbers 224
4.2.2 Fourier Series 225
4.2.3 Impulses and Their Sifting Property 225
4.2.4 The Fourier Transform of Functions of One Continuous Variable 227
4.2.5 Convolution 231
4.3 Sampling and the Fourier Transform of Sampled Functions 233
4.3.1 Sampling 233
4.3.2 The Fourier Transform of Sampled Functions 234
4.3.3 The Sampling Theorem 235
4.3.4 Aliasing 239
4.3.5 Function Reconstruction (Recovery) from Sampled Data 241
4.4 The Discrete Fourier Transform (DFT) of One Variable 242
4.4.1 Obtaining the DFT from the Continuous Transform of a Sampled Function 243
4.4.2 Relationship Between the Sampling and Frequency Intervals 245
4.5 Extension to Functions of Two Variables 247
4.5.1 The 2-D Impulse and Its Sifting Property 247
4.5.2 The 2-D Continuous Fourier Transform Pair 248
4.5.3 Two-Dimensional Sampling and the 2-D Sampling Theorem 249
4.5.4 Aliasing in Images 250
4.5.5 The 2-D Discrete Fourier Transform and Its Inverse 257
4.6 Some Properties of the 2-D Discrete Fourier Transform 258
4.6.1 Relationships Between Spatial and Frequency Intervals 258
4.6.2 Translation and Rotation 258
4.6.3 Periodicity 259
4.6.4 Symmetry Properties 261
4.6.5 Fourier Spectrum and Phase Angle 267
4.6.6 The 2-D Convolution Theorem 271
4.6.7 Summary of 2-D Discrete Fourier Transform Properties 275
4.7 The Basics of Filtering in the Frequency Domain 277
4.7.1 Additional Characteristics of the Frequency Domain 277
4.7.2 Frequency Domain Filtering Fundamentals 279
4.7.3 Summary of Steps for Filtering in the Frequency Domain 285
4.7.4 Correspondence Between Filtering in the Spatial and Frequency Domains 285
4.8 Image Smoothing Using Frequency Domain Filters 291
4.8.1 Ideal Lowpass Filters 291
4.8.2 Butterworth Lowpass Filters 295
4.8.3 Gaussian Lowpass Filters 298
4.8.4 Additional Examples of Lowpass Filtering 299
4.9 Image Sharpening Using Frequency Domain Filters 302
4.9.1 Ideal Highpass Filters 303
4.9.2 Butterworth Highpass Filters 306
4.9.3 Gaussian Highpass Filters 307
4.9.4 The Laplacian in the Frequency Domain 308
4.9.5 Unsharp Masking, Highboost Filtering, and High-Frequency-Emphasis Filtering 310
4.9.6 Homomorphic Filtering 311
4.10 Selective Filtering 316
4.10.1 Bandreject and Bandpass Filters 316
4.10.2 Notch Filters 316
4.11 Implementation 320
4.11.1 Separability of the 2-D DFT 320
4.11.2 Computing the IDFT Using a DFT Algorithm 321
4.11.3 The Fast Fourier Transform (FFT) 321
4.11.4 Some Comments on Filter Design 325
Summary 325
References and Further Reading 326
Problems 326

Chapter 5 Image Restoration and Reconstruction 333
5.1 A Model of the Image Degradation/Restoration Process 334
5.2 Noise Models 335
5.2.1 Spatial and Frequency Properties of Noise 335
5.2.2 Some Important Noise Probability Density Functions 336
5.2.3 Periodic Noise 340
5.2.4 Estimation of Noise Parameters 341
5.3 Restoration in the Presence of Noise Only—Spatial Filtering 344
5.3.1 Mean Filters 344
5.3.2 Order-Statistic Filters 347
5.3.3 Adaptive Filters 352
5.4 Periodic Noise Reduction by Frequency Domain Filtering 357
5.4.1 Bandreject Filters 357
5.4.2 Bandpass Filters 358
5.4.3 Notch Filters 359
5.4.4 Optimum Notch Filtering 360
5.5 Linear, Position-Invariant Degradations 365
5.6 Estimating the Degradation Function 368
5.6.1 Estimation by Image Observation 368
5.6.2 Estimation by Experimentation 369
5.6.3 Estimation by Modeling 369
5.7 Inverse Filtering 373
5.8 Minimum Mean Square Error (Wiener) Filtering 374
5.9 Constrained Least Squares Filtering 379
5.10 Geometric Mean Filter 383
5.11 Image Reconstruction from Projections 384
5.11.1 Introduction 384
5.11.2 Principles of Computed Tomography (CT) 387
5.11.3 Projections and the Radon Transform 390
5.11.4 The Fourier-Slice Theorem
展開全部

數字圖像處理-(第三版)-英文版 作者簡介

    Rafael C. Gonzalez(拉婓爾.岡薩雷斯):美國田納西大學電氣和計算機工程系教授、田納西大學圖像和模式分析實驗室、機器人和計算機視覺實驗室創始人、IEEE會士,研究領域為模式識別、圖像處理和機器人,其著作已被全球范圍內的600多所大學和研究所采用。
    Richard E. Woods 美國田納西大學電氣工程系博士,IEEE會員。

商品評論(1條)
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 钢化玻璃膜|手机钢化膜|钢化膜厂家|手机保护膜-【东莞市大象电子科技有限公司】 | 校园文化空间设计-数字化|中医文化空间设计-党建|法治廉政主题文化空间施工-山东锐尚文化传播公司 | 协议书_协议合同格式模板范本大全 | 全国国际学校排名_国际学校招生入学及学费-学校大全网 | 搪瓷搅拌器,搪玻璃搅拌器,搪玻璃冷凝器_厂家-淄博越宏化工设备 | 颗粒机,颗粒机组,木屑颗粒机-济南劲能机械有限公司 | 济南ISO9000认证咨询代理公司,ISO9001认证,CMA实验室认证,ISO/TS16949认证,服务体系认证,资产管理体系认证,SC食品生产许可证- 济南创远企业管理咨询有限公司 郑州电线电缆厂家-防火|低压|低烟无卤电缆-河南明星电缆 | 厌氧反应器,IC厌氧反应器,厌氧三相分离器-山东创博环保科技有限公司 | 减速机电机一体机_带电机减速器一套_德国BOSERL电动机与减速箱生产厂家 | 礼堂椅厂家|佛山市艺典家具有限公司| 圆周直径尺-小孔内视镜-纤维研磨刷-东莞市高腾达精密工具 | 肉嫩度仪-凝胶测试仪-国产质构仪-气味分析仪-上海保圣实业发展有限公司|总部 | 深圳工程师职称评定条件及流程_深圳职称评审_职称评审-职称网 | 亿立分板机_曲线_锯片式_走刀_在线式全自动_铣刀_在线V槽分板机-杭州亿协智能装备有限公司 | 菲希尔FISCHER测厚仪-铁素体检测仪-上海吉馨实业发展有限公司 | 企业VI设计_LOGO设计公司_品牌商标设计_【北京美研】 | 耐酸碱胶管_耐腐蚀软管总成_化学品输送软管_漯河利通液压科技耐油耐磨喷砂软管|耐腐蚀化学软管 | 诚暄电子公司首页-线路板打样,pcb线路板打样加工制作厂家 | 中视电广_短视频拍摄_短视频推广_短视频代运营_宣传片拍摄_影视广告制作_中视电广 | 专业深孔加工_东莞深孔钻加工_东莞深孔钻_东莞深孔加工_模具深孔钻加工厂-东莞市超耀实业有限公司 | 【孔氏陶粒】建筑回填陶粒-南京/合肥/武汉/郑州/重庆/成都/杭州陶粒厂家 | 广东西屋电气有限公司-广东西屋电气有限公司 | T恤衫定做,企业文化衫制作订做,广告T恤POLO衫定制厂家[源头工厂]-【汉诚T恤定制网】 | Eiafans.com_环评爱好者 环评网|环评论坛|环评报告公示网|竣工环保验收公示网|环保验收报告公示网|环保自主验收公示|环评公示网|环保公示网|注册环评工程师|环境影响评价|环评师|规划环评|环评报告|环评考试网|环评论坛 - Powered by Discuz! | NBA直播_NBA直播免费观看直播在线_NBA直播免费高清无插件在线观看-24直播网 | 谷歌关键词优化-外贸网站优化-Google SEO小语种推广-思亿欧外贸快车 | 运动木地板_体育木地板_篮球馆木地板_舞台木地板-实木运动地板厂家 | 法兰连接型电磁流量计-蒸汽孔板节流装置流量计-北京凯安达仪器仪表有限公司 | 合肥角钢_合肥槽钢_安徽镀锌管厂家-昆瑟商贸有限公司 | 国际金融网_每日财经新资讯网| 楼梯定制_楼梯设计施工厂家_楼梯扶手安装制作-北京凌步楼梯 | 耐磨焊丝,堆焊焊丝,耐磨药芯焊丝,碳化钨焊丝-北京耐默公司 | 旋片真空泵_真空泵_水环真空泵_真空机组-深圳恒才机电设备有限公司 | 自动化生产线-自动化装配线-直流电机自动化生产线-东莞市慧百自动化有限公司 | 扫地车厂家-山西洗地机-太原电动扫地车「大同朔州吕梁晋中忻州长治晋城洗地机」山西锦力环保科技有限公司 | 河北码上网络科技|邯郸小程序开发|邯郸微信开发|邯郸网站建设 | 酒水灌装机-白酒灌装机-酒精果酒酱油醋灌装设备_青州惠联灌装机械 | 体坛网_体坛+_体坛周报新闻客户端| 锤式粉碎机,医药粉碎机,锥式粉碎机-无锡市迪麦森机械制造有限公司 | 河南中专学校|职高|技校招生-河南中职中专网| 国际学校_国际学校哪个好_国际课程学校-国际学校择校网 |