包郵 人工智能:智能系統(tǒng)指南(英文版)第二版
經(jīng)典原版書(shū)庫(kù)
有劃線標(biāo)記、光盤(pán)等附件不全詳細(xì)品相說(shuō)明>>
-
>
全國(guó)計(jì)算機(jī)等級(jí)考試最新真考題庫(kù)模擬考場(chǎng)及詳解·二級(jí)MSOffice高級(jí)應(yīng)用
-
>
決戰(zhàn)行測(cè)5000題(言語(yǔ)理解與表達(dá))
-
>
軟件性能測(cè)試.分析與調(diào)優(yōu)實(shí)踐之路
-
>
第一行代碼Android
-
>
JAVA持續(xù)交付
-
>
EXCEL最強(qiáng)教科書(shū)(完全版)(全彩印刷)
-
>
深度學(xué)習(xí)
人工智能:智能系統(tǒng)指南(英文版)第二版 版權(quán)信息
- ISBN:7111158369
- 條形碼:9787111158363 ; 978-7-111-15836-3
- 裝幀:簡(jiǎn)裝本
- 冊(cè)數(shù):暫無(wú)
- 重量:暫無(wú)
- 所屬分類:>
人工智能:智能系統(tǒng)指南(英文版)第二版 內(nèi)容簡(jiǎn)介
人工智能經(jīng)常被人們認(rèn)為是計(jì)算機(jī)科學(xué)中的一門(mén)高度復(fù)雜甚至令人生畏的學(xué)科。長(zhǎng)期以來(lái)人工智能方面的書(shū)籍往往包含復(fù)雜矩陣代數(shù)和微分方程。本書(shū)形成于作者多年來(lái)給沒(méi)有多少微積分知識(shí)的學(xué)生授課時(shí)所用的講義,它假定讀者預(yù)先沒(méi)有編程的經(jīng)驗(yàn),并說(shuō)明了智能系統(tǒng)中的大部分基礎(chǔ)知識(shí)實(shí)際上是簡(jiǎn)單易懂的。本書(shū)目前已經(jīng)被國(guó)際上多所大學(xué)(例如,德國(guó)的馬德堡大學(xué)、日本的廣島大學(xué)、美國(guó)的波士頓大學(xué)和羅切斯特理工學(xué)院)采用。
如果你正在尋找關(guān)于人工智能或智能系統(tǒng)設(shè)計(jì)課程的淺顯易懂的入門(mén)級(jí)教材,如果你不是計(jì)算機(jī)科學(xué)領(lǐng)域的專業(yè)人員,而又正在尋找介紹基于知識(shí)系統(tǒng)*新技術(shù)發(fā)展的自學(xué)指南,本書(shū)將是*佳選擇。
本書(shū)的主要內(nèi)容:
基于規(guī)則的專家系統(tǒng)
模糊專家系統(tǒng)
基于框架的專家系統(tǒng)
人工神經(jīng)網(wǎng)絡(luò)
進(jìn)化計(jì)算
混合智能系統(tǒng)
知識(shí)工程
數(shù)據(jù)挖掘。
人工智能:智能系統(tǒng)指南(英文版)第二版 目錄
Preface to the Second edition
Acknowledgements
1 Introduction To Knowledge-Based Intelligent Systems
1.1 Intelligent Machines, Or What Machines Can Do
1.2 The History Of Artificial Intelligence, Or From The‘DarkAges’To Knowledge-Based Systems
1.3 Summary
Questions For Review
References
2 Rule-Based Expert Systems
2.1 Introduction, Or What Is Knowledge?
2.2 Rules As A Knowledge Representation Technique
2.3 The Main Players In The Expert System Development Team
2.4 Structure Of A Rule-Based Expert System
2.5 Fundamental Characteristics Of An Expert System
2.6 Forward Chaining And Backward Chaining Inference Techniques
2.7 MEDIA ADVISOR: A Demonstration Rule-Based Expert System
2.8 Conflict Resolution
2.9 Advantages And Disadvantages Of Rule-Based Expert Systems
2.10 Summary
Questions For Review
References
3 Uncertainty Management In Rule-Based Expert Systems
3.1 Introduction, Or What Is Uncertainty?
3.2 Basic Probability Theory
3.3 Bayesian Reasoning
3.4 FORECAST: Bayesian Accumulation Of Evidence
3.5 Bias Of The Bayesian Mesod
3.6 Certainty Factors Theory And Evidential Reasoning
3.7 FORECAST: An Application Of Certainty Factors
3.8 Comparison Of Bayesian Reasoning And Certainty Factors
3.9 Summary
Questions For Review
References
4 Fuzzy Expert Systems
4.1 Introduction, Or What Is Fuzzy Thinking?
4.2 Fuzzy Sets
4.3 Linguistic Variables And Hedges
4.4 Operations Of Fuzzy Sets
4.5 Fuzzy Rules
4.6 Fuzzy Inference
4.7 Building A Fuzzy Expert System
4.8 Summary
Questions For Review
References
Bibliography
5 Frame-Based Expert Systems
5.1 Introduction, Or What Is A Frame?
5.2 Frames As A Knowledge Representation Technique
5.3 Inference In Frame-Based Experts
5.4 Methods And Demons
5.5 Interaction Of Frames And Rules
5.6 Buy Smart: A Frame-Based Expert System
5.7 Summary
Questions For Review
References
Bibliography
6 Artificial Neural Networks
6.1 Introduction, Or How The Brain Works
6.2 The Neuron As A Simple Computing Element
6.3 The Perceptron
6.4 Multilayer Neural Networks
6.5 Accelerated Learning In Multilayer Neural Networks
6.6 The Hopfield Network
6.7 Bidirectional Associative Memories
6.8 Self-Organising Neural Networks
6.9 Summary
Questions For Review
References
7 Evolutionary Computation
7.1 Introduction, Or Can Evolution Be Intelligent?
7.2 Simulation Of Natural Evolution
7.3 Genetic Algorithms
7.4 Why Genetic Algorithms Work
7.5 Case Study: Maintenance Scheduling With Genetic Algorithms
7.6 Evolutionary Strategies
7.7 Genetic Programming
7.8 Summary
Questions For Review
References
8 Hybrid Intelligent Systems
8.1 Introduction, Or How To Combine German Mechanics With Italian Love
8.2 Neural Expert Systems
8.3 Neuro-Fuzzy Systems
8.4 ANFIS: Adaptive Neuro-Fuzy Inference System
8.5 Evolutionary Neural Networks
8.6 Fuzzy Evolutionary Systems
8.7 Summary
Questions For Review
References
9 Knowledge Engineering And Data Mining
9.1 Introduction, Or What Is Knowledge Engineering?
9.2 Will An Expert System Work For My Problem?
9.3 Will A Fuzzy Expert System Work For My Problem?
9.4 Will A Neural Network Work For My Problem?
9.5 Will Genetic Algorithms Work For My Problem?
9.6 Will A Neuro-Fuzzy System Work For My Problem?
9.7 Data Mining And Knowledge Discovery
9.8 Summary
Questions For Review
References
Glossary
Appendix
Index
人工智能:智能系統(tǒng)指南(英文版)第二版 作者簡(jiǎn)介
Michael negnevitsky 澳大利亞塔斯馬尼亞大學(xué)電氣工程和計(jì)算機(jī)科學(xué)系教授,他的許多研究課題都涉及人工智能和軟計(jì)算,一直致力于電氣工程,過(guò)程控制和環(huán)境工程中的、智能系統(tǒng)的開(kāi)發(fā)和應(yīng)用,他著有200多篇論文、兩本書(shū),并獲得了四項(xiàng)發(fā)明專利。
- >
伯納黛特,你要去哪(2021新版)
- >
名家?guī)阕x魯迅:故事新編
- >
中國(guó)歷史的瞬間
- >
經(jīng)典常談
- >
上帝之肋:男人的真實(shí)旅程
- >
我與地壇
- >
苦雨齋序跋文-周作人自編集
- >
伊索寓言-世界文學(xué)名著典藏-全譯本