中圖網小程序
一鍵登錄
更方便
本類五星書更多>
-
>
全國計算機等級考試最新真考題庫模擬考場及詳解·二級MSOffice高級應用
-
>
決戰行測5000題(言語理解與表達)
-
>
軟件性能測試.分析與調優實踐之路
-
>
第一行代碼Android
-
>
JAVA持續交付
-
>
EXCEL最強教科書(完全版)(全彩印刷)
-
>
深度學習
DISTRIBUTED STOCHASTIC METHODS AND APPLICATION 版權信息
- ISBN:9787502498085
- 條形碼:9787502498085 ; 978-7-5024-9808-5
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
DISTRIBUTED STOCHASTIC METHODS AND APPLICATION 內容簡介
Copyright ¤Metallurgical Industry Press 2024.All rights reserved.No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the copyright owner.
DISTRIBUTED STOCHASTIC METHODS AND APPLICATION 目錄
Chapter 1Introduction1
1.1Distributed optimization4
1.1.1Distributed deterministic optimization4
1.1.2Distributed stochastic optimization10
1.2Distributed machine learning13
1.2.1Distributed regression problem14
1.2.2Distributed classification problem16
1.2.3Distributed clustering problems17
1.3Structure and work of this book17
Chapter 2Preliminaries19
2.1Convex analysis19
2.1.1Euclidean norm inequalities19
2.1.2Lipschitz continuous gradient22
2.2Probability theory23
Chapter 3Distributed Stochastic Sub-gradient Descent Algorithm24
3.1Distributed stochastic sub-gradient descent algorithm for
convex optimization24
3.1.1Background24
3.1.2Problem,algorithm and assumptions25
3.1.3Basic relations27
3.1.4Convergence in mean28
3.1.5Almost sure and mean square convergence29
3.2Distributed stochastic sub-gradient descent algorithm for regression
estimation with incomplete data30
3.2.1Background31
3.2.2Problem formulation33
3.2.3Distributed adaptive gradient-based algorithm36
3.2.4Main results of DAGA38
3.2.5Simulations47
3.2.6Conclusion50
3.3Distributed classification learning based on nonlinear vector support
machines for switching networks51
3.3.1Background51
3.3.2Preliminary and SVM formulation53
3.3.3Distributed nonlinear SVM learning54
3.3.4Distributed stochastic sub-gradient based SVM algorithm58
3.3.5Simulations63
3.3.6Conclusion67
Chapter 4Distributed Mirror-descent Algorithm68
4.1Distributed stochastic mirror descent algorithm over time-varying
network68
4.1.1Background68
4.1.2Preliminaries and assumptions70
4.1.3Distributed stochastic mirror descent algorithm72
4.1.4Main result73
4.1.5Simulation78
4.1.6Conclusions79
4.2A Stochastic mirror-descent algorithm for solving AXB=C over an
multi-agent system80
4.2.1Background80
4.2.2Preliminaries81
4.2.3Problem formulation and algorithm design83
4.2.4Main result86
4.2.5Simulation95
4.2.6Conclusions96
4.3Distributed stochastic mirror descent algorithm for resource
allocation problem97
4.3.1Background97
4.3.2Preliminaries99
4.3.3Problem formulation and algorithm design100
4.3.4Main result103
4.3.5Simulation109
4.3.6Conclusions113
4.4Distributed communication-sliding algorithm for nonsmooth
resource allocation problem113
4.4.1Background113
4.4.2Preliminaries115
4.4.3Problem formulation and algorithm design119
4.4.4Main result122
4.4.5Simulation130
4.4.6Conclusion132
Chapter 5Distributed Subgradient-free Algorithm133
5.1Distributed subgradient-free stochastic optimization algorithm
for nonsmooth convex functions over time-varying nentworks133
5.1.1Background133
5.1.2Preliminaries136
5.1.3Distributed algorithm and hypotheses139
5.1.4Main results143
5.1.5Simulations154
5.1.6Conclusions158
5.2A zeroth-order algorithm to distributed optimization with
stochastic stripe observations158
5.2.1Background159
5.2.2Mathematical preliminaries161
5.2.3Formulation and algorithm162
5.2.4Main results166
5.2.5Simulation171
5.2.6Conclusion173
5.3Distributed online optimization with gradient-free design174
5.3.1Background175
5.3.2Notations and preliminaries176
5.3.3Formulation and algorithm178
5.3.4Main results181
5.3.5Simulation184
Chapter 6Distributed Stochastic Accelerated Descent Algorithm186
6.1Convergence analysis of accelerated distributed gradient methods
with random sleeping scheme186
6.1.1Background186
6.1.2Preliminaries and problem formulation188
6.1.3Main results189
6.1.4Conclusions200
6.2Distributed accelerated descent algorithm for energy resource
coordination in multi-agent integrated energy systems200
6.2.1Background201
6.2.2MA-IES structure and DERC modeling203
6.2.3Distributed algorithm for the DERC 208
6.2.4Case studies214
6.2.5Simulation 223
Chapter 7Distributed Algorithm in Machine Learning225
7.1Consensus-based EM algorithm for gaussian mixtures in
time-varying networks225
7.1.1Background225
7.1.2Preliminaries and problem formulation227
7.1.3Standard EM algorithm229
7.1.4Consensus-based jointly-connected EM algorithm231
7.1.5Simulation234
7.1.6Conclusion237
7.2Distributed boosting algorithm over multi-agent networks239
7.2.1Background239
7.2.2Preliminary and previous work241
7.2.3Distributed algorithm244
7.2.4Simulation246
7.2.5Conclusions249
References250
展開全部
書友推薦
- >
姑媽的寶刀
- >
中國人在烏蘇里邊疆區:歷史與人類學概述
- >
二體千字文
- >
伯納黛特,你要去哪(2021新版)
- >
名家帶你讀魯迅:朝花夕拾
- >
小考拉的故事-套裝共3冊
- >
月亮虎
- >
自卑與超越
本類暢銷