掃一掃
關注中圖網
官方微博
廣義三角函數與雙曲函數:英文 版權信息
- ISBN:9787576709391
- 條形碼:9787576709391 ; 978-7-5767-0939-1
- 裝幀:平裝-膠訂
- 冊數:暫無
- 重量:暫無
- 所屬分類:>>
廣義三角函數與雙曲函數:英文 內容簡介
本書的主要目的是引入并研究被稱為廣義三角函數和雙曲函數的各種主題。該方法和相關分析基本上是作者自己的研究成果,并且在許多情況下,這些內容與該主題之前的數學研究沒有聯系。一般來說,作者獲得的結果是通過使用“嚴格的啟發式”數學分析風格得出并討論的。然而,盡管有些人可能認為這種研究方法是有限制的,但此過程允許我們遵循非常有趣的結果。學習并理解本書內容需要讀者已經掌握了基本平面幾何、三角學和一年的微積分課程的相關知識。
廣義三角函數與雙曲函數:英文 目錄
Dedication
List of Figures
Preface
Author
1 TRIGONOMETRIC AND HYPERBOLIC SINE AND COSINE FUNCTIONS
1.1 INTRODUCTION
1.2 SINE AND COSINE: GEOMETRIC DEFINITIONS
1.3 SINE AND COSINE: ANALYTIC DEFINITION
1.3.1 Derivatives
1.3.2 Integrals
1.3.3 Taylor Series
1.3.4 Addition and Subtraction Rules
1.3.5 Product Rules
1.4 SINE AND COSINE: DYNAMIC SYSTEM APPROACH
1.4.1 x-y Phase-Space
1.4.2 Symmetry Properties of Trajectories in Phase-Space
1.4.3 Null-Clines
1.4.4 Geometric Proof that All Trajectories Are Closed
1.5 HYPERBOLIC SINE AND COSINE: DERIVED FROM SINE AND COSINE
1.6 HYPERBOLIC FUNCTIONS: DYNAMIC SYSTEM DERIVATION
1.7 0-PERIODIC HYPERBOLIC FUNCTIONS
1.8 DISCUSSION
Notes and References
2 ELLIPTIC FUNCTIONS
2.1 INTRODUCTION
2.2 0-PERIODIC ELLIPTIC FUNCTIONS
2.3 ELLIPTIC HAMILTONIAN DYNAMICS
2.4 JACOBI, CN, SN, AND DN FUNCTIONS
2.4.1 Elementary Properties of Jacobi Elliptic Functions
2.4.2 First Derivatives
2.4.3 Differential Equations
2.4.4 Calculation of u(0) and the Period for cn, sn, dn
2.4.5 Special Values of Jacobi Elliptic Functions
2.5 ADDITIONAL PROPERTIES OF JACOBI ELLIPTIC FUNCTIONS
2.5.1 Fundamental Relations for Square of Functions
2.5.2 Addition Theorems
2.5.3 Product Relations
2.5.4 cn, sn, dn for Special k Values
2.5.5 Fourier Series
2.6 DYNAMICAL SYSTEM INTERPRETATION OF ELLIPTIC JACOBI FUNCTIONS
2.6.1 Definition of the Dynamic System
2.6.2 Limitsk→0 andk→l-
2.6.3 First Integrals
2.6.4 Bounds and Symmetries
2.6.5 Second-Order Differential Equations
2.6.6 Discussion
2.7 HYPERBOLIC ELLIPTIC FUNCTIONS AS A DYNAMIC SYSTEM
2.8 HYPERBOLIC 0-PERIODIC ELLIPTIC FUNCTIONS
2.9 DISCUSSION
Notes and References
3 SQUARE FUNCTIONS
3.1 INTRODUCTION
3.2 PROPERTIES OF THE SQUARE TRIGONOMETRIC FUNCTIONS
3.3 PERIOD OF THE SQUARE TRIGONOMETRIC FUNCTIONS IN THE VARIABLE
3.4 FOURIER SERIES OF THE SQUARE TRIGONOMETRIC FUNCTIONS
3.5 DYNAMIC SYSTEM INTERPRETATION OF|x| |y| = 1
3.6 HYPERBOLIC SQUARE FUNCTIONS: DYNAMICS SYSTEM APPROACH
3.7 PERIODIC HYPERBOLIC SQUARE FUNCTIONS
Notes and References
4 PARABOLIC TRIGONOMETRIC FUNCTIONS
4.1 INTRODUCTION
4.2 H(x, y) =|y| (1/2) x2 AS A DYNAMIC SYSTEM
4.3 GEOMETRIC ANALYSIS OF|y| (1/2)x2 = 1/2=1 AS A DYNAMIC SYSTEM
4.4 lyl-(1/2)x2=1/2
4.5 GEOMETRIC ANALYSIS OF|y| (1/2)x2 =1/2
Notes and References
5 GENERALIZED PERIODIC SOLUTIONS OF f(t)2 g(t)2 = 1
5.1 INTRODUCTION
5.2 GENERALIZED COSINE AND SINE FUNCTIONS
5.3 MATHEMATICAL STRUCTURE OF O(t)
5.4 AN EXAMPLE: A(t)=alsin(2π/T)t
5.5 DIFFERENTIAL EQUATION FOR f(t) AND g(t)
5.6 DISCUSSION
5.7 NON-PERIODIC SOLUTION; OF f2(t) g2(t)=1
Notes and References
6 RESUME OF (SOME) PREVIOUS RESULTS ON GENERALIZED TRIGONOMETRIC FUNCTIONS
6.1 INTRODUCTION
6.2 DIFFERENTIAL EQUATION FORMULATION
6.3 DEFINITION AS INTEGRAL FORMS
6.4 GEOMETRIC APPROACH
6.5 SYMMETRY CONSIDERATIONS AND CONSEQUENCES
6.5.1 Symmetry Transformation and Consequences
6.5.2 Hamiltonian Formulation
6.5.3 Area of Enclosed Curve
6.5.4 Period
6.6 SUMMARY
Notes and References
7 GENERALIZED TRIGONOMETRIC FUNCTIONS:|y|p |x|q=1
7.1 INTRODUCTION
7.2 METHODOLOGY
7.3 SUMMARY
7.4 GALLERY OF PARTICULAR SOLUTIONS
8 GENERALIZED TRIGONOMETRIC HYPERBOLIC FUNCTIONS:|y|p |x|q=1
8.1 INTRODUCTION
8.2 SOLUTIONS
8.3 GALLERY OF SPECIAL SOLUTIONS
9 APPLICATIONS AND ADVANCED TOPICS
9.1 INTRODUCTION
9.2 ODD-PARITY SYSTEMS AND THEIR FOURIER REPRESENTATIONS
9.3 TRULY NONLINEAR OSCILLATORS
9.3.1 Antisymmetric, Constant Force Oscillator
9.3.2 Particle in a Box
9.3.3 Restricted Duffing Equation
9.4 ATEB PERIODIC FUNCTIONS
9.5 EXACT DISCRETIZATION OF THE JACOBI ELLIPTI
List of Figures
Preface
Author
1 TRIGONOMETRIC AND HYPERBOLIC SINE AND COSINE FUNCTIONS
1.1 INTRODUCTION
1.2 SINE AND COSINE: GEOMETRIC DEFINITIONS
1.3 SINE AND COSINE: ANALYTIC DEFINITION
1.3.1 Derivatives
1.3.2 Integrals
1.3.3 Taylor Series
1.3.4 Addition and Subtraction Rules
1.3.5 Product Rules
1.4 SINE AND COSINE: DYNAMIC SYSTEM APPROACH
1.4.1 x-y Phase-Space
1.4.2 Symmetry Properties of Trajectories in Phase-Space
1.4.3 Null-Clines
1.4.4 Geometric Proof that All Trajectories Are Closed
1.5 HYPERBOLIC SINE AND COSINE: DERIVED FROM SINE AND COSINE
1.6 HYPERBOLIC FUNCTIONS: DYNAMIC SYSTEM DERIVATION
1.7 0-PERIODIC HYPERBOLIC FUNCTIONS
1.8 DISCUSSION
Notes and References
2 ELLIPTIC FUNCTIONS
2.1 INTRODUCTION
2.2 0-PERIODIC ELLIPTIC FUNCTIONS
2.3 ELLIPTIC HAMILTONIAN DYNAMICS
2.4 JACOBI, CN, SN, AND DN FUNCTIONS
2.4.1 Elementary Properties of Jacobi Elliptic Functions
2.4.2 First Derivatives
2.4.3 Differential Equations
2.4.4 Calculation of u(0) and the Period for cn, sn, dn
2.4.5 Special Values of Jacobi Elliptic Functions
2.5 ADDITIONAL PROPERTIES OF JACOBI ELLIPTIC FUNCTIONS
2.5.1 Fundamental Relations for Square of Functions
2.5.2 Addition Theorems
2.5.3 Product Relations
2.5.4 cn, sn, dn for Special k Values
2.5.5 Fourier Series
2.6 DYNAMICAL SYSTEM INTERPRETATION OF ELLIPTIC JACOBI FUNCTIONS
2.6.1 Definition of the Dynamic System
2.6.2 Limitsk→0 andk→l-
2.6.3 First Integrals
2.6.4 Bounds and Symmetries
2.6.5 Second-Order Differential Equations
2.6.6 Discussion
2.7 HYPERBOLIC ELLIPTIC FUNCTIONS AS A DYNAMIC SYSTEM
2.8 HYPERBOLIC 0-PERIODIC ELLIPTIC FUNCTIONS
2.9 DISCUSSION
Notes and References
3 SQUARE FUNCTIONS
3.1 INTRODUCTION
3.2 PROPERTIES OF THE SQUARE TRIGONOMETRIC FUNCTIONS
3.3 PERIOD OF THE SQUARE TRIGONOMETRIC FUNCTIONS IN THE VARIABLE
3.4 FOURIER SERIES OF THE SQUARE TRIGONOMETRIC FUNCTIONS
3.5 DYNAMIC SYSTEM INTERPRETATION OF|x| |y| = 1
3.6 HYPERBOLIC SQUARE FUNCTIONS: DYNAMICS SYSTEM APPROACH
3.7 PERIODIC HYPERBOLIC SQUARE FUNCTIONS
Notes and References
4 PARABOLIC TRIGONOMETRIC FUNCTIONS
4.1 INTRODUCTION
4.2 H(x, y) =|y| (1/2) x2 AS A DYNAMIC SYSTEM
4.3 GEOMETRIC ANALYSIS OF|y| (1/2)x2 = 1/2=1 AS A DYNAMIC SYSTEM
4.4 lyl-(1/2)x2=1/2
4.5 GEOMETRIC ANALYSIS OF|y| (1/2)x2 =1/2
Notes and References
5 GENERALIZED PERIODIC SOLUTIONS OF f(t)2 g(t)2 = 1
5.1 INTRODUCTION
5.2 GENERALIZED COSINE AND SINE FUNCTIONS
5.3 MATHEMATICAL STRUCTURE OF O(t)
5.4 AN EXAMPLE: A(t)=alsin(2π/T)t
5.5 DIFFERENTIAL EQUATION FOR f(t) AND g(t)
5.6 DISCUSSION
5.7 NON-PERIODIC SOLUTION; OF f2(t) g2(t)=1
Notes and References
6 RESUME OF (SOME) PREVIOUS RESULTS ON GENERALIZED TRIGONOMETRIC FUNCTIONS
6.1 INTRODUCTION
6.2 DIFFERENTIAL EQUATION FORMULATION
6.3 DEFINITION AS INTEGRAL FORMS
6.4 GEOMETRIC APPROACH
6.5 SYMMETRY CONSIDERATIONS AND CONSEQUENCES
6.5.1 Symmetry Transformation and Consequences
6.5.2 Hamiltonian Formulation
6.5.3 Area of Enclosed Curve
6.5.4 Period
6.6 SUMMARY
Notes and References
7 GENERALIZED TRIGONOMETRIC FUNCTIONS:|y|p |x|q=1
7.1 INTRODUCTION
7.2 METHODOLOGY
7.3 SUMMARY
7.4 GALLERY OF PARTICULAR SOLUTIONS
8 GENERALIZED TRIGONOMETRIC HYPERBOLIC FUNCTIONS:|y|p |x|q=1
8.1 INTRODUCTION
8.2 SOLUTIONS
8.3 GALLERY OF SPECIAL SOLUTIONS
9 APPLICATIONS AND ADVANCED TOPICS
9.1 INTRODUCTION
9.2 ODD-PARITY SYSTEMS AND THEIR FOURIER REPRESENTATIONS
9.3 TRULY NONLINEAR OSCILLATORS
9.3.1 Antisymmetric, Constant Force Oscillator
9.3.2 Particle in a Box
9.3.3 Restricted Duffing Equation
9.4 ATEB PERIODIC FUNCTIONS
9.5 EXACT DISCRETIZATION OF THE JACOBI ELLIPTI
展開全部
書友推薦
- >
月亮與六便士
- >
伊索寓言-世界文學名著典藏-全譯本
- >
史學評論
- >
【精裝繪本】畫給孩子的中國神話
- >
巴金-再思錄
- >
中國人在烏蘇里邊疆區:歷史與人類學概述
- >
煙與鏡
- >
有舍有得是人生
本類暢銷