中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)
> >>
稀疏統(tǒng)計(jì)學(xué)習(xí):LASSO方法及其推廣

包郵 稀疏統(tǒng)計(jì)學(xué)習(xí):LASSO方法及其推廣

出版社:世界圖書(shū)出版公司出版時(shí)間:2023-09-01
開(kāi)本: 其他 頁(yè)數(shù): 378
中 圖 價(jià):¥128.9(7.2折) 定價(jià)  ¥179.0 登錄后可看到會(huì)員價(jià)
加入購(gòu)物車 收藏
開(kāi)年大促, 全場(chǎng)包郵
?新疆、西藏除外
本類五星書(shū)更多>

稀疏統(tǒng)計(jì)學(xué)習(xí):LASSO方法及其推廣 版權(quán)信息

稀疏統(tǒng)計(jì)學(xué)習(xí):LASSO方法及其推廣 內(nèi)容簡(jiǎn)介

稀疏統(tǒng)計(jì)模型只具有少數(shù)非零參數(shù)或權(quán)重,經(jīng)典地體現(xiàn)了化繁為簡(jiǎn)的理念,因而廣泛應(yīng)用于諸多領(lǐng)域。本書(shū)就稀疏性統(tǒng)計(jì)學(xué)習(xí)做出總結(jié),以LASSO方法為中心,層層推進(jìn),逐漸囊括其他方法,深入探討諸多稀疏性問(wèn)題的求解和應(yīng)用;不僅包含大量的例子和清晰的圖表,還附有文獻(xiàn)注釋和課后練習(xí),是深入學(xué)習(xí)統(tǒng)計(jì)學(xué)知識(shí)的參考。本書(shū)適合計(jì)算機(jī)科學(xué)、統(tǒng)計(jì)學(xué)和機(jī)器學(xué)習(xí)的學(xué)生和研究人員。

稀疏統(tǒng)計(jì)學(xué)習(xí):LASSO方法及其推廣 目錄

Preface 1 Introduction 2 The Lasso for Linear Models 2.1 Introduction 2.2 The Lasso Estimator 2.3 Cross-Validation and Inference 2.4 Computation of the Lasso Solution 2.4.1 Single Predictor: Soft Thresholding 2.4.2 Multiple Predictors: Cyclic Coordinate Descent 2.4.3 Soft-Thresholding and Orthogonal Bases 2.5 Degrees of Freedom 2.6 Uniqueness of the Lasso Solutions 2.7 A Glimpse at the Theory 2.8 The Nonnegative Garrote 2.9 lq Penalties and Bayes Estimates 2.10 Some Perspective Exercises 3 Generalized Linear Models 3.1 Introduction 3.2 Logistic Regression 3.2.1 Example: Document Classification 3.2.2 Algorithms 3.3 Multiclass Logistic Regression 3.3.1 Example: Handwritten Digits 3.3.2 Algorithms 3.3.3 Grouped-Lasso Multinomial 3.4 Log-Linear Models and the Poisson GLM 3.4.1 Example: Distribution Smoothing 3.5 Cox Proportional Hazards Models 3.5.1 Cross-Validation 3.5.2 Pre-Validation 3.6 Support Vector Machines 3.6.1 Logistic Regression with Separable Data 3.7 Computational Details and glmnet Bibliographic Notes Exercises 4 Generalizations of the Lasso Penalty 4.1 Introduction 4.2 The Elastic Net 4.3 The Group Lasso 4.3.1 Computation for the Group Lasso 4.3.2 Sparse Group Lasso 4.3.3 The Overlap Group Lasso 4.4 Sparse Additive Models and the Group Lasso 4.4.1 Additive Models and Backfitting 4.4.2 Sparse Additive Models and Backfitting 4.4.3 Approaches Using Optimization and the Group Lasso 4.4.4 Multiple Penalization for Sparse Additive Models 4.5 The Fused Lasso 4.5.1 Fitting the Fused Lasso 4.5.1.1 Reparametrization 4.5.1.2 A Path Algorithm 4.5.1.3 A Dual Path Algorithm 4.5.1.4 Dynamic Programming for the Fused Lasso 4.5.2 Trend Filtering 4.5.3 Nearly Isotonic Regression 4.6 Nonconvex Penalties Bibliographic Notes Exercises 5 Optimization Methods 5.1 Introduction 5.2 Convex Optimality Conditions 5.2.1 Optimality for Differentiable Problems 5.2.2 Nondifferentiable Functions and Subgradients 5.3 Gradient Descent 5.3.1 Unconstrained Gradient Descent 5.3.2 Projected Gradient Methods 5.3.3 Proximal Gradient Methods 5.3.4 Accelerated Gradient Methods 5.4 Coordinate Descent 5.4.1 Separability and Coordinate Descent 5.4.2 Linear Regression and the Lasso 5.4.3 Logistic Regression and Generalized Linear Models 5.5 A Simulation Study 5.6 Least Angle Regression 5.7 Alternating Direction Method of Multipliers 5.8 Minorization-Maximization Algorithms 5.9 Biconvexity and Alternating Minimization 5.10 Screening Rules Bibliographic Notes Appendix Exercises 6 Statistical Inference 6.1 The Bayesian Lasso 6.2 The Bootstrap 6.3 Post-Selection Inference for the Lasso 6.3.1 The Covariance Test 6.3.2 A General Scheme for Post-Selection Inference 6.3.2.1 Fixed-入 Inference for the Lasso 6.3.2.2 The Spacing Test for LAR 6.3.3 What Hypothesis Is Being Tested? 6.3.4 Back to Forward Stepwise Regression 6.4 Inference via a Debiased Lasso 6.5 Other Proposals for Post-Selection Inference Bibliographic Notes Exercises 7 Matrix Decompositions, Approximations, and Completion 7.1 Introduction 7.2 The Singular Value Decomposition 7.3 Missing Data and Matrix Completion 7.3.1 The Netflix Movie Challenge 7.3.2 Matrix Completion Using Nuclear Norm 7.3.3 Theoretical Results for Matrix Completion 7.3.4 Maximum Margin Factorization and Related Methods 7.4 Reduced-Rank Regression 7.5 A General Matrix Regression Framework 7.6 Penalized Matrix Decomposition 7.7 Additive Matrix Decomposition Bibliographic Notes Exercises 8 Sparse Multivariate Methods 8.1 Introduction 8.2 Sparse Principal Components Analysis 8.2.1 Some Background 8.2.2 Sparse Principal Components 8.2.2.1 Sparsity from Maximum Variance 8.2.2.2 Methods Based on Reconstruction 8.2.3 Higher-Rank Solutions 8.2.3.1 Illustrative Application of Sparse PCA 8.2.4 Sparse PCA via Fantope Projection 8.2.5 Sparse Autoencoders and Deep Learning 8.2.6 Some Theory for Sparse PCA 8.3 Sparse Canonical Correlation Analysis 8.3.1 Example: Netflix Movie Rating Data 8.4 Sparse Linear Discriminant Analysis 8.4.1 Normal Theory and Bayes' Rule 8.4.2 Nearest Shrunken Centroids 8.4.3 Fisher's Linear Discriminant Analysis 8.4.3.1 Example: Simulated Data with Five Classes 8.4.4 Optimal Scoring 8.4.4.1 Example: Face Silhouettes 8.5 Sparse Clustering 8.5.1 Some Background on Clustering 8.5.1.1 Example: Simulated Data with Six Classes 8.5.2 Sparse Hierarchical Clustering 8.5.3 Sparse K-Means Clustering 8.5.4 Convex Clustering Bibliographic Notes Exercises 9 Graphs and Model Selection 9.1 Introduction 9.2 Basics of Graphical Models 9.2.1 Factorization and Markov Properties 9.2.1.1 Factorization Property 9.2.1.2 Markov Property 9.2.1.3 Equivalence of Factorization and Markov Properties 9.2.2 Some Examples 9.2.2.1 Discrete Graphical Models 9.2.2.2 Gaussian Graphical Models 9.3 Graph Selection via Penalized Likelihood 9.3.1 Global Likelihoods for Gaussian Models 9.3.2 Graphical Lasso Algorithm 9.3.3 Exploiting Block-Diagonal Structure 9.3.4 Theoretical Guarantees for the Graphical Lasso 9.3.5 Global Likelihood for Discrete Models 9.4 Graph Selection via Conditional Inference 9.4.1 Neighborhood-Based Likelihood for Gaussians 9.4.2 Neighborhood-Based Likelihood for Discrete Models 9.4.3 Pseudo-Likelihood for Mixed Models 9.5 Graphical Models with Hidden Variables Bibliographic Notes Exercises 10 Signal Approximation and Compressed Sensing 10.1 Introduction 10.2 Signals and Sparse Representations 10.2.1 Orthogonal Bases 10.2.2 Approximation in Orthogonal Bases 10.2.3 Reconstruction in Overcomplete Bases 10.3 Random Projection and Approximation 10.3.1 Johnson–Lindenstrauss Approximation 10.3.2 Compressed Sensing 10.4 Equivalence between lo and l1 Recovery 10.4.1 Restricted Nullspace Property 10.4.2 Sufficient Conditions for Restricted Nullspace 10.4.3 Proofs 10.4.3.1 Proof of Theorem 10.1 10.4.3.2 Proof of Proposition 10.1 Bibliographic Notes Exercises 11 Theoretical Results for the Lasso 11.1 Introduction 11.1.1 Types of Loss Functions 11.1.2 Types of Sparsity Models 11.2 Bounds on Lasso l2-Error 11.2.1 Strong Convexity in the Classical Setting 11.2.2 Restricted Eigenvalues for Regression 11.2.3 A Basic Consistency Result 11.3 Bounds on Prediction Error 11.4 Support Recovery in Linear Regression 11.4.1 Variable-Selection Consistency for the Lasso 11.4.1.1 Some Numerical Studies 11.5 Beyond the Basic Lasso Bibliographic Notes Exercises Bibliography Author Index Index
展開(kāi)全部

稀疏統(tǒng)計(jì)學(xué)習(xí):LASSO方法及其推廣 作者簡(jiǎn)介

Trevor Hastie 美國(guó)統(tǒng)計(jì)學(xué)家和計(jì)算機(jī)科學(xué)家,斯坦福大學(xué)統(tǒng)計(jì)學(xué)教授,英國(guó)統(tǒng)計(jì)學(xué)會(huì)、國(guó)際數(shù)理統(tǒng)計(jì)協(xié)會(huì)和美國(guó)統(tǒng)計(jì)學(xué)會(huì)會(huì)士。Hastie參與開(kāi)發(fā)了R中的大部分統(tǒng)計(jì)建模軟件和環(huán)境,發(fā)明了主曲線和主曲面。
Robert Tibshirani 斯坦福大學(xué)統(tǒng)計(jì)學(xué)教授,國(guó)際數(shù)理統(tǒng)計(jì)協(xié)會(huì)、美國(guó)統(tǒng)計(jì)學(xué)會(huì)和加拿大皇家學(xué)會(huì)會(huì)士,1996年COPSS總統(tǒng)獎(jiǎng)得主,提出lasso方法。Hastie和Tibshirani都是統(tǒng)計(jì)學(xué)習(xí)領(lǐng)域的泰山北斗,兩人合著了The Elements of Statistical Learning,還合作講授斯坦福大學(xué)的公開(kāi)課“統(tǒng)計(jì)學(xué)習(xí)”。
Martin Wainwright 畢業(yè)于MIT,加州大學(xué)伯克利分校教授,以對(duì)統(tǒng)計(jì)與計(jì)算交叉學(xué)的理論和方法研究而聞名于學(xué)界,主要關(guān)注高維統(tǒng)計(jì)、機(jī)器學(xué)習(xí)、圖模型和信息理論。2014年COPSS總統(tǒng)獎(jiǎng)得主。

商品評(píng)論(0條)
暫無(wú)評(píng)論……
書(shū)友推薦
本類暢銷
編輯推薦
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: 洛阳防爆合格证办理-洛阳防爆认证机构-洛阳申请国家防爆合格证-洛阳本安防爆认证代办-洛阳沪南抚防爆电气技术服务有限公司 | 沥青车辙成型机-车托式混凝土取芯机-混凝土塑料试模|鑫高仪器 | 深圳南财多媒体有限公司介绍 | 北京开源多邦科技发展有限公司官网 | 回收二手冲床_金丰旧冲床回收_协易冲床回收 - 大鑫机械设备 | 南京技嘉环保科技有限公司-杀菌除臭剂|污水|垃圾|厕所|橡胶厂|化工厂|铸造厂除臭剂 | 深圳市人通智能科技有限公司| 防火门|抗爆门|超大门|医疗门|隔声门-上海加汇门业生产厂家 | 隧道风机_DWEX边墙风机_SDS射流风机-绍兴市上虞科瑞风机有限公司 | 风化石头制砂机_方解石制砂机_瓷砖石子制砂机_华盛铭厂家 | 科研ELISA试剂盒,酶联免疫检测试剂盒,昆虫_植物ELISA酶免试剂盒-上海仁捷生物科技有限公司 | 六维力传感器_六分量力传感器_模腔压力传感器-南京数智微传感科技有限公司 | 仓储笼_仓储货架_南京货架_仓储货架厂家_南京货架价格低-南京一品仓储设备制造公司 | ptc_浴霸_大巴_干衣机_呼吸机_毛巾架_电动车加热器-上海帕克 | 权威废金属|废塑料|废纸|废铜|废钢价格|再生资源回收行情报价中心-中废网 | 恒温油槽-恒温水槽-低温恒温槽厂家-宁波科麦仪器有限公司 | 南京欧陆电气股份有限公司-风力发电机官网 | 鼓风干燥箱_真空烘箱_高温干燥箱_恒温培养箱-上海笃特科学仪器 | 物和码官网,物和码,免费一物一码数字化营销SaaS平台 | 蜂窝块状沸石分子筛-吸附脱硫分子筛-萍乡市捷龙环保科技有限公司 | 富森高压水枪-柴油驱动-养殖场高压清洗机-山东龙腾环保科技有限公司 | 威实软件_软件定制开发_OA_OA办公系统_OA系统_办公自动化软件 | 安全光栅|射频导纳物位开关|音叉料位计|雷达液位计|两级跑偏开关|双向拉绳开关-山东卓信机械有限公司 | 不锈钢/气体/液体玻璃转子流量计(防腐,选型,规格)-常州天晟热工仪表有限公司【官网】 | 艾默生变频器,艾默生ct,变频器,ct驱动器,广州艾默生变频器,供水专用变频器,风机变频器,电梯变频器,艾默生变频器代理-广州市盟雄贸易有限公司官方网站-艾默生变频器应用解决方案服务商 | 搜活动房网—活动房_集装箱活动房_集成房屋_活动房屋 | 脱硝喷枪-氨水喷枪-尿素喷枪-河北思凯淋环保科技有限公司 | 【北京写字楼出租_写字楼租赁_办公室出租网/出售】-远行地产官网 | FAG轴承,苏州FAG轴承,德国FAG轴承-恩梯必传动设备(苏州)有限公司 | 耐磨陶瓷,耐磨陶瓷管道_厂家-淄博拓创陶瓷科技 | 四川实木门_成都实木门 - 蓬溪聚成门业有限公司 | 温州食堂承包 - 温州市尚膳餐饮管理有限公司 | 注浆压力变送器-高温熔体传感器-矿用压力传感器|ZHYQ朝辉 | 上海公司注册-代理记账-招投标审计-上海昆仑扇财税咨询有限公司 上海冠顶工业设备有限公司-隧道炉,烘箱,UV固化机,涂装设备,高温炉,工业机器人生产厂家 | 踏板力计,制动仪,非接触多功能速度仪,逆反射系数测试仪-创宇 | [官网]叛逆孩子管教_戒网瘾学校_全封闭问题青少年素质教育_新起点青少年特训学校 | 神超官网_焊接圆锯片_高速钢锯片_硬质合金锯片_浙江神超锯业制造有限公司 | 传动滚筒_厂家-淄博海恒机械制造厂 | 物和码官网,物和码,免费一物一码数字化营销SaaS平台 | 石牌坊价格石牌坊雕刻制作_石雕牌坊牌楼石栏杆厂家_山东嘉祥石雕有限公司 | 涂层测厚仪_光泽度仪_uv能量计_紫外辐照计_太阳膜测试仪_透光率仪-林上科技 |