中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
稀疏統計學習:LASSO方法及其推廣

包郵 稀疏統計學習:LASSO方法及其推廣

出版社:世界圖書出版公司出版時間:2023-09-01
開本: 其他 頁數: 378
本類榜單:自然科學銷量榜
中 圖 價:¥128.9(7.2折) 定價  ¥179.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

稀疏統計學習:LASSO方法及其推廣 版權信息

  • ISBN:9787523201329
  • 條形碼:9787523201329 ; 978-7-5232-0132-9
  • 裝幀:平裝-膠訂
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>>

稀疏統計學習:LASSO方法及其推廣 內容簡介

稀疏統計模型只具有少數非零參數或權重,經典地體現了化繁為簡的理念,因而廣泛應用于諸多領域。本書就稀疏性統計學習做出總結,以LASSO方法為中心,層層推進,逐漸囊括其他方法,深入探討諸多稀疏性問題的求解和應用;不僅包含大量的例子和清晰的圖表,還附有文獻注釋和課后練習,是深入學習統計學知識的參考。本書適合計算機科學、統計學和機器學習的學生和研究人員。

稀疏統計學習:LASSO方法及其推廣 目錄

Preface 1 Introduction 2 The Lasso for Linear Models 2.1 Introduction 2.2 The Lasso Estimator 2.3 Cross-Validation and Inference 2.4 Computation of the Lasso Solution 2.4.1 Single Predictor: Soft Thresholding 2.4.2 Multiple Predictors: Cyclic Coordinate Descent 2.4.3 Soft-Thresholding and Orthogonal Bases 2.5 Degrees of Freedom 2.6 Uniqueness of the Lasso Solutions 2.7 A Glimpse at the Theory 2.8 The Nonnegative Garrote 2.9 lq Penalties and Bayes Estimates 2.10 Some Perspective Exercises 3 Generalized Linear Models 3.1 Introduction 3.2 Logistic Regression 3.2.1 Example: Document Classification 3.2.2 Algorithms 3.3 Multiclass Logistic Regression 3.3.1 Example: Handwritten Digits 3.3.2 Algorithms 3.3.3 Grouped-Lasso Multinomial 3.4 Log-Linear Models and the Poisson GLM 3.4.1 Example: Distribution Smoothing 3.5 Cox Proportional Hazards Models 3.5.1 Cross-Validation 3.5.2 Pre-Validation 3.6 Support Vector Machines 3.6.1 Logistic Regression with Separable Data 3.7 Computational Details and glmnet Bibliographic Notes Exercises 4 Generalizations of the Lasso Penalty 4.1 Introduction 4.2 The Elastic Net 4.3 The Group Lasso 4.3.1 Computation for the Group Lasso 4.3.2 Sparse Group Lasso 4.3.3 The Overlap Group Lasso 4.4 Sparse Additive Models and the Group Lasso 4.4.1 Additive Models and Backfitting 4.4.2 Sparse Additive Models and Backfitting 4.4.3 Approaches Using Optimization and the Group Lasso 4.4.4 Multiple Penalization for Sparse Additive Models 4.5 The Fused Lasso 4.5.1 Fitting the Fused Lasso 4.5.1.1 Reparametrization 4.5.1.2 A Path Algorithm 4.5.1.3 A Dual Path Algorithm 4.5.1.4 Dynamic Programming for the Fused Lasso 4.5.2 Trend Filtering 4.5.3 Nearly Isotonic Regression 4.6 Nonconvex Penalties Bibliographic Notes Exercises 5 Optimization Methods 5.1 Introduction 5.2 Convex Optimality Conditions 5.2.1 Optimality for Differentiable Problems 5.2.2 Nondifferentiable Functions and Subgradients 5.3 Gradient Descent 5.3.1 Unconstrained Gradient Descent 5.3.2 Projected Gradient Methods 5.3.3 Proximal Gradient Methods 5.3.4 Accelerated Gradient Methods 5.4 Coordinate Descent 5.4.1 Separability and Coordinate Descent 5.4.2 Linear Regression and the Lasso 5.4.3 Logistic Regression and Generalized Linear Models 5.5 A Simulation Study 5.6 Least Angle Regression 5.7 Alternating Direction Method of Multipliers 5.8 Minorization-Maximization Algorithms 5.9 Biconvexity and Alternating Minimization 5.10 Screening Rules Bibliographic Notes Appendix Exercises 6 Statistical Inference 6.1 The Bayesian Lasso 6.2 The Bootstrap 6.3 Post-Selection Inference for the Lasso 6.3.1 The Covariance Test 6.3.2 A General Scheme for Post-Selection Inference 6.3.2.1 Fixed-入 Inference for the Lasso 6.3.2.2 The Spacing Test for LAR 6.3.3 What Hypothesis Is Being Tested? 6.3.4 Back to Forward Stepwise Regression 6.4 Inference via a Debiased Lasso 6.5 Other Proposals for Post-Selection Inference Bibliographic Notes Exercises 7 Matrix Decompositions, Approximations, and Completion 7.1 Introduction 7.2 The Singular Value Decomposition 7.3 Missing Data and Matrix Completion 7.3.1 The Netflix Movie Challenge 7.3.2 Matrix Completion Using Nuclear Norm 7.3.3 Theoretical Results for Matrix Completion 7.3.4 Maximum Margin Factorization and Related Methods 7.4 Reduced-Rank Regression 7.5 A General Matrix Regression Framework 7.6 Penalized Matrix Decomposition 7.7 Additive Matrix Decomposition Bibliographic Notes Exercises 8 Sparse Multivariate Methods 8.1 Introduction 8.2 Sparse Principal Components Analysis 8.2.1 Some Background 8.2.2 Sparse Principal Components 8.2.2.1 Sparsity from Maximum Variance 8.2.2.2 Methods Based on Reconstruction 8.2.3 Higher-Rank Solutions 8.2.3.1 Illustrative Application of Sparse PCA 8.2.4 Sparse PCA via Fantope Projection 8.2.5 Sparse Autoencoders and Deep Learning 8.2.6 Some Theory for Sparse PCA 8.3 Sparse Canonical Correlation Analysis 8.3.1 Example: Netflix Movie Rating Data 8.4 Sparse Linear Discriminant Analysis 8.4.1 Normal Theory and Bayes' Rule 8.4.2 Nearest Shrunken Centroids 8.4.3 Fisher's Linear Discriminant Analysis 8.4.3.1 Example: Simulated Data with Five Classes 8.4.4 Optimal Scoring 8.4.4.1 Example: Face Silhouettes 8.5 Sparse Clustering 8.5.1 Some Background on Clustering 8.5.1.1 Example: Simulated Data with Six Classes 8.5.2 Sparse Hierarchical Clustering 8.5.3 Sparse K-Means Clustering 8.5.4 Convex Clustering Bibliographic Notes Exercises 9 Graphs and Model Selection 9.1 Introduction 9.2 Basics of Graphical Models 9.2.1 Factorization and Markov Properties 9.2.1.1 Factorization Property 9.2.1.2 Markov Property 9.2.1.3 Equivalence of Factorization and Markov Properties 9.2.2 Some Examples 9.2.2.1 Discrete Graphical Models 9.2.2.2 Gaussian Graphical Models 9.3 Graph Selection via Penalized Likelihood 9.3.1 Global Likelihoods for Gaussian Models 9.3.2 Graphical Lasso Algorithm 9.3.3 Exploiting Block-Diagonal Structure 9.3.4 Theoretical Guarantees for the Graphical Lasso 9.3.5 Global Likelihood for Discrete Models 9.4 Graph Selection via Conditional Inference 9.4.1 Neighborhood-Based Likelihood for Gaussians 9.4.2 Neighborhood-Based Likelihood for Discrete Models 9.4.3 Pseudo-Likelihood for Mixed Models 9.5 Graphical Models with Hidden Variables Bibliographic Notes Exercises 10 Signal Approximation and Compressed Sensing 10.1 Introduction 10.2 Signals and Sparse Representations 10.2.1 Orthogonal Bases 10.2.2 Approximation in Orthogonal Bases 10.2.3 Reconstruction in Overcomplete Bases 10.3 Random Projection and Approximation 10.3.1 Johnson–Lindenstrauss Approximation 10.3.2 Compressed Sensing 10.4 Equivalence between lo and l1 Recovery 10.4.1 Restricted Nullspace Property 10.4.2 Sufficient Conditions for Restricted Nullspace 10.4.3 Proofs 10.4.3.1 Proof of Theorem 10.1 10.4.3.2 Proof of Proposition 10.1 Bibliographic Notes Exercises 11 Theoretical Results for the Lasso 11.1 Introduction 11.1.1 Types of Loss Functions 11.1.2 Types of Sparsity Models 11.2 Bounds on Lasso l2-Error 11.2.1 Strong Convexity in the Classical Setting 11.2.2 Restricted Eigenvalues for Regression 11.2.3 A Basic Consistency Result 11.3 Bounds on Prediction Error 11.4 Support Recovery in Linear Regression 11.4.1 Variable-Selection Consistency for the Lasso 11.4.1.1 Some Numerical Studies 11.5 Beyond the Basic Lasso Bibliographic Notes Exercises Bibliography Author Index Index
展開全部

稀疏統計學習:LASSO方法及其推廣 作者簡介

Trevor Hastie 美國統計學家和計算機科學家,斯坦福大學統計學教授,英國統計學會、國際數理統計協會和美國統計學會會士。Hastie參與開發了R中的大部分統計建模軟件和環境,發明了主曲線和主曲面。
Robert Tibshirani 斯坦福大學統計學教授,國際數理統計協會、美國統計學會和加拿大皇家學會會士,1996年COPSS總統獎得主,提出lasso方法。Hastie和Tibshirani都是統計學習領域的泰山北斗,兩人合著了The Elements of Statistical Learning,還合作講授斯坦福大學的公開課“統計學習”。
Martin Wainwright 畢業于MIT,加州大學伯克利分校教授,以對統計與計算交叉學的理論和方法研究而聞名于學界,主要關注高維統計、機器學習、圖模型和信息理論。2014年COPSS總統獎得主。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 苏州工作服定做-工作服定制-工作服厂家网站-尺品服饰科技(苏州)有限公司 | 电采暖锅炉_超低温空气源热泵_空气源热水器-鑫鲁禹电锅炉空气能热泵厂家 | 艺术漆十大品牌_艺术涂料加盟代理_蒙太奇艺术涂料厂家品牌|艺术漆|微水泥|硅藻泥|乳胶漆 | 有福网(yofus.com)洗照片冲印,毕业聚会纪念册相册制作个性DIY平台 | 蚂蚁分类信息系统 - PHP同城分类信息系统 - MayiCMS | ASA膜,ASA共挤料,篷布色母料-青岛未来化学有限公司 | 撕碎机_轮胎破碎机_粉碎机_回收生产线厂家_东莞华达机械有限公司 | 震动筛选机|震动分筛机|筛粉机|振筛机|振荡筛-振动筛分设备专业生产厂家高服机械 | 知名电动蝶阀,电动球阀,气动蝶阀,气动球阀生产厂家|价格透明-【固菲阀门官网】 | 湖南自考_湖南自学考试 | 大功率金属激光焊接机价格_不锈钢汽车配件|光纤自动激光焊接机设备-东莞市正信激光科技有限公司 定制奶茶纸杯_定制豆浆杯_广东纸杯厂_[绿保佳]一家专业生产纸杯碗的厂家 | 广州网站建设_小程序开发_番禺网站建设_佛山网站建设_粤联网络 | 中央空调温控器_风机盘管温控器_智能_液晶_三速开关面板-中央空调温控器厂家 | 北京模型公司-工业模型-地产模型-施工模型-北京渝峰时代沙盘模型制作公司 | 不锈钢/气体/液体玻璃转子流量计(防腐,选型,规格)-常州天晟热工仪表有限公司【官网】 | 金属切削液-脱水防锈油-电火花机油-抗磨液压油-深圳市雨辰宏业科技发展有限公司 | 纳米涂料品牌 防雾抗污纳米陶瓷涂料厂家_虹瓷科技 | 清水混凝土修复_混凝土色差修复剂_混凝土色差调整剂_清水混凝土色差修复_河南天工 | 筛分机|振动筛分机|气流筛分机|筛分机厂家-新乡市大汉振动机械有限公司 | 2025世界机器人大会_IC China_半导体展_集成电路博览会_智能制造展览网 | 高压油管,液压接头,液压附件-烟台市正诚液压附件 | 纯化水设备-纯水设备-超纯水设备-[大鹏水处理]纯水设备一站式服务商-东莞市大鹏水处理科技有限公司 | 意大利Frascold/富士豪压缩机_富士豪半封闭压缩机_富士豪活塞压缩机_富士豪螺杆压缩机 | 柔软云母板-硬质-水位计云母片组件-首页-武汉长丰云母绝缘材料有限公司 | 中医中药治疗血小板减少-石家庄血液病肿瘤门诊部 | 沧州友城管业有限公司-内外涂塑钢管-大口径螺旋钢管-涂塑螺旋管-保温钢管生产厂家 | 湖南档案密集架,智能,物证,移动,价格-湖南档案密集架厂家 | 干粉砂浆设备-干粉砂浆生产线-干混-石膏-保温砂浆设备生产线-腻子粉设备厂家-国恒机械 | 棕刚玉_白刚玉_铝酸钙-锐石新材料 | 污水提升器,污水提升泵,地下室排水,增压泵,雨水泵,智能供排水控制器-上海智流泵业有限公司 | 特材真空腔体_哈氏合金/镍基合金/纯镍腔体-无锡国德机械制造有限公司 | 彩超机-黑白B超机-便携兽用B超机-多普勒彩超机价格「大为彩超」厂家 | 旋振筛|圆形摇摆筛|直线振动筛|滚筒筛|压榨机|河南天众机械设备有限公司 | 废水处理-废气处理-工业废水处理-工业废气处理工程-深圳丰绿环保废气处理公司 | 涡街流量计_LUGB智能管道式高温防爆蒸汽温压补偿计量表-江苏凯铭仪表有限公司 | 润东方环保空调,冷风机,厂房车间降温设备-20年深圳环保空调生产厂家 | VI设计-LOGO设计公司-品牌设计公司-包装设计公司-导视设计-杭州易象设计 | 泉州陶瓷pc砖_园林景观砖厂家_石英砖地铺石价格 _福建暴风石英砖 | 设定时间记录电子秤-自动累计储存电子秤-昆山巨天仪器设备有限公司 | 横河变送器-横河压力变送器-EJA变送器-EJA压力变送器-「泉蕴仪表」 | 无痕胶_可移胶_无痕双面胶带_可移无痕胶厂家-东莞凯峰 |