中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊

包郵 PANDAS數據分析

出版社:清華大學出版社出版時間:2023-06-01
開本: 其他 頁數: 699
中 圖 價:¥109.9(6.5折) 定價  ¥169.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

PANDAS數據分析 版權信息

PANDAS數據分析 本書特色

Pandas是強大且流行的庫,是Python中數據科學的代名詞。本書將向你介紹如何使用Pandas對真實世界的數據集進行數據分析,如股市數據、模擬黑客攻擊的數據、天氣趨勢、地震數據、葡萄酒數據和天文數據等。Pandas使我們能夠有效地處理表格數據,從而使數據整理和可視化變得更容易。

PANDAS數據分析 內容簡介

《Pandas數據分析》詳細闡述了與Pandas數據分析相關的基本解決方案,主要包括數據分析導論、使用Pandas DataFrame、使用Pandas進行數據整理、聚合Pandas DataFrame、使用Pandas和Matplotlib可視化數據、使用Seaborn和自定義技術繪圖、金融分析、基于規則的異常檢測、Python機器學習入門、做出更好的預測、機器學習異常檢測等內容。此外,本書還提供了相應的示例、代碼,以幫助讀者進一步理解相關方案的實現過程。 本書適合作為高等院校計算機及相關專業的教材和教學參考書,也可作為相關開發人員的自學用書和參考手冊。

PANDAS數據分析 目錄

第1篇 Pandas入門
第1章 數據分析導論 3
1.1 章節材料 3
1.2 數據分析基礎知識 5
1.2.1 數據收集 6
1.2.2 數據整理 7
1.2.3 探索性數據分析 8
1.2.4 得出結論 9
1.3 統計基礎知識 10
1.3.1 采樣 11
1.3.2 描述性統計 12
1.3.3 集中趨勢的度量 12
1.3.4 均值 12
1.3.5 中位數 13
1.3.6 眾數 13
1.3.7 數據散布的度量 14
1.3.8 全距 14
1.3.9 方差 15
1.3.10 標準差 15
1.3.11 變異系數 16
1.3.12 四分位距 17
1.3.13 四分位離散系數 17
1.3.14 匯總數據 18
1.3.15 常見分布 22
1.3.16 縮放數據 24
1.3.17 量化變量之間的關系 25
1.3.18 匯總統計的陷阱 27
1.3.19 預測 28
1.3.20 推論統計 32
1.4 設置虛擬環境 35
1.4.1 虛擬環境 35
1.4.2 使用venv 36
1.4.3 Windows中的操作 37
1.4.4 Linux/macOS中的操作 37
1.4.5 使用conda 38
1.4.6 安裝所需的Python包 40
1.4.7 關于Pandas 40
1.4.8 Jupyter Notebook 41
1.4.9 啟動JupyterLab 41
1.4.10 驗證虛擬環境 43
1.4.11 關閉JupyterLab 45
1.5 小結 45
1.6 練習 46
1.7 延伸閱讀 47
第2章 使用Pandas DataFrame 49
2.1 章節材料 49
2.2 Pandas數據結構 50
2.2.1 Series 55
2.2.2 Index 56
2.2.3 DataFrame 57
2.3 創建Pandas DataFrame 60
2.3.1 從Python對象中創建DataFrame 61
2.3.2 從文件中創建DataFrame 65
2.3.3 從數據庫中創建DataFrame 69
2.3.4 從API中獲取數據以創建DataFrame 71
2.4 檢查DataFrame對象 74
2.4.1 檢查數據 74
2.4.2 描述數據 77
2.5 抓取數據的子集 80
2.5.1 選擇列 81
2.5.2 切片 84
2.5.3 索引 86
2.5.4 過濾 88
2.6 添加和刪除數據 95
2.6.1 創建新數據 96
2.6.2 刪除不需要的數據 104
2.7 小結 106
2.8 練習 107
2.9 延伸閱讀 107
第2篇 使用Pandas進行數據分析
第3章 使用Pandas進行數據整理 111
3.1 章節材料 112
3.2 關于數據整理 113
3.2.1 數據清洗 114
3.2.2 數據轉換 114
3.2.3 寬數據格式 116
3.2.4 長數據格式 118
3.2.5 數據充實 121
3.3 探索API以查找和收集溫度數據 122
3.4 清洗數據 132
3.4.1 重命名列 133
3.4.2 類型轉換 134
3.4.3 按值排序 140
3.4.4 索引排序 143
3.4.5 設置索引 144
3.4.6 重置索引 145
3.4.7 重新索引 146
3.5 重塑數據 153
3.5.1 轉置DataFrame 155
3.5.2 旋轉DataFrame 155
3.5.3 融合DataFrame 161
3.6 處理重復、缺失或無效的數據 164
3.6.1 查找有問題的數據 164
3.6.2 處理潛在的問題 171
3.7 小結 180
3.8 練習 180
3.9 延伸閱讀 182
第4章 聚合Pandas DataFrame 183
4.1 章節材料 183
4.2 在DataFrame上執行數據庫風格的操作 185
4.2.1 查詢DataFrame 186
4.2.2 合并DataFrame 187
4.3 使用DataFrame操作充實數據 197
4.3.1 算術和統計 198
4.3.2 分箱 200
4.3.3 應用函數 205
4.3.4 窗口計算 207
4.3.5 滾動窗口 207
4.3.6 擴展窗口 210
4.3.7 指數加權移動窗口 211
4.3.8 管道 212
4.4 聚合數據 215
4.4.1 匯總DataFrame 217
4.4.2 按組聚合 218
4.4.3 數據透視表和交叉表 224
4.5 處理時間序列數據 227
4.5.1 基于日期選擇和過濾數據 228
4.5.2 基于時間選擇和過濾數據 230
4.5.3 移動滯后數據 234
4.5.4 差分數據 235
4.5.5 重采樣 236
4.5.6 合并時間序列 240
4.6 小結 242
4.7 練習 243
4.8 延伸閱讀 245
第5章 使用Pandas和Matplotlib可視化數據 247
5.1 章節材料 247
5.2 Matplotlib簡介 249
5.2.1 基礎知識 249
5.2.2 繪圖組件 255
5.2.3 其他選項 258
5.3 使用Pandas繪圖 260
5.3.1 隨時間演變 262
5.3.2 變量之間的關系 269
5.3.3 分布 275
5.3.4 計數和頻率 283
5.4 pandas.plotting模塊 291
5.4.1 散點圖矩陣 291
5.4.2 滯后圖 294
5.4.3 自相關圖 296
5.4.4 自舉圖 297
5.5 小結 298
5.6 練習 299
5.7 延伸閱讀 299
第6章 使用Seaborn和自定義技術繪圖 301
6.1 章節材料 301
6.2 使用Seaborn進行高級繪圖 303
6.2.1 分類數據 304
6.2.2 相關性和熱圖 308
6.2.3 回歸圖 317
6.2.4 分面 321
6.3 使用Matplotlib格式化繪圖 323
6.3.1 標題和標簽 323
6.3.2 圖例 326
6.3.3 格式化軸 329
6.4 自定義可視化 336
6.4.1 添加參考線 336
6.4.2 區域著色 341
6.4.3 注解 344
6.4.4 顏色 346
6.4.5 顏色表 348
6.4.6 條件著色 355
6.4.7 紋理 357
6.5 小結 360
6.6 練習 360
6.7 延伸閱讀 361
第3篇 使用Pandas進行實際應用分析
第7章 金融分析 365
7.1 章節材料 366
7.2 構建Python包 367
7.2.1 封裝結構 368
7.2.2 stock_analysis包概述 369
7.2.3 UML圖 371
7.3 收集金融數據 372
7.3.1 StockReader類 373
7.3.2 從Yahoo!Finance中收集歷史數據 381
7.4 探索性數據分析 383
7.4.1 Visualizer類系列 388
7.4.2 可視化股票 394
7.4.3 可視化多個資產 407
7.5 金融工具的技術分析 413
7.5.1 StockAnalyzer類 414
7.5.2 AssetGroupAnalyzer類 421
7.5.3 比較資產 423
7.6 使用歷史數據建模 427
7.6.1 StockModeler類 427
7.6.2 時間序列分解 433
7.6.3 ARIMA 434
7.6.4 使用statsmodel進行線性回歸 436
7.6.5 比較模型 438
7.7 小結 440
7.8 練習 441
7.9 延伸閱讀 442
第8章 基于規則的異常檢測 445
8.1 章節材料 445
8.2 模擬登錄嘗試 446
8.2.1 假設 446
8.2.2 構建login_attempt_simulator包 447
8.2.3 輔助函數 448
8.2.4 構建LoginAttemptSimulator類 450
8.2.5 從命令行中進行模擬 461
8.3 探索性數據分析 467
8.3.1 讀入模擬數據 467
8.3.2 異常登錄行為的特點 468
8.3.3 檢查數據 469
8.3.4 比較登錄嘗試次數 470
8.3.5 比較登錄成功率 473
8.3.6 使用錯誤率指標 474
8.3.7 通過可視化找出異常值 476
8.4 實現基于規則的異常檢測 479
8.4.1 百分比差異 480
8.4.2 Tukey圍欄 485
8.4.3 Z分數 486
8.4.4 評估性能 488
8.5 小結 493
8.6 練習 493
8.7 延伸閱讀 494
第4篇 scikit-learn和機器學習
第9章 Python機器學習入門 499
9.1 章節材料 499
9.2 機器學習概述 501
9.2.1 機器學習的類型 502
9.2.2 常見任務 502
9.2.3 Python中的機器學習 503
9.3 探索性數據分析 504
9.3.1 紅酒品質數據 505
9.3.2 白葡萄酒和紅葡萄酒化學性質數據 508
9.3.3 行星和系外行星數據 511
9.4 預處理數據 517
9.4.1 訓練和測試集 518
9.4.2 縮放和居中數據 520
9.4.3 編碼數據 522
9.4.4 估算 525
9.4.5 附加轉換器 527
9.4.6 構建數據管道 529
9.5 聚類 531
9.5.1 k均值 532
9.5.2 按軌道特征對行星進行分組 532
9.5.3 使用肘點法確定k值 535
9.5.4 解釋質心并可視化聚類空間 537
9.5.5 評估聚類結果 540
9.6 回歸 542
9.6.1 線性回歸 542
9.6.2 預測行星一年的長度 543
9.6.3 解釋線性回歸方程 544
9.6.4 做出預測 545
9.6.5 評估回歸結果 546
9.6.6 指標 548
9.7 分類 552
9.7.1 邏輯回歸 552
9.7.2 預測紅酒質量 553
9.7.3 通過化學性質確定葡萄酒類型 554
9.7.4 評估分類結果 555
9.7.5 混淆矩陣 555
9.7.6 分類指標 559
9.7.7 準確率和錯誤率 559
9.7.8 精確率和召回率 560
9.7.9 F分數 562
9.7.10 敏感性和特異性 563
9.7.11 ROC曲線 564
9.7.12 精確率-召回率曲線 568
9.8 小結 571
9.9 練習 572
9.10 延伸閱讀 574
第10章 做出更好的預測 577
10.1 章節材料 577
10.2 使用網格搜索調整超參數 580
10.2.1 拆分驗證集 580
10.2.2 使用交叉驗證 582
10.2.3 使用RepeatedStratifiedKFold 585
10.3 特征工程 588
10.3.1 交互項和多項式特征 589
10.3.2 降維 592
10.3.3 特征聯合 601
10.3.4 特征重要性 603
10.4 集成方法 606
10.4.1 隨機森林 608
10.4.2 梯度提升 609
10.4.3 投票 610
10.4.4 檢查分類預測置信度 612
10.5 解決類不平衡的問題 616
10.5.1 欠采樣 618
10.5.2 過采樣 619
10.6 正則化 621
10.7 小結 623
10.8 練習 624
10.9 延伸閱讀 626
第11章 機器學習異常檢測 629
11.1 章節材料 629
11.2 探索模擬登錄嘗試數據 631
11.3 利用無監督學習執行異常檢測 638
11.3.1 隔離森林 639
11.3.2 局部異常因子 641
11.3.3 比較模型 643
11.4 實現有監督學習的異常檢測 647
11.4.1 基線模型 649
11.4.2 虛擬分類器 649
11.4.3 樸素貝葉斯 651
11.4.4 邏輯回歸 655
11.5 將反饋循環與在線學習相結合 657
11.5.1 創建PartialFitPipeline子類 658
11.5.2 隨機梯度下降分類器 658
11.5.3 構建初始模型 660
11.5.4 評估模型 661
11.5.5 更新模型 666
11.5.6 提交結果 668
11.5.7 進一步改進 669
11.6 小結 669
11.7 練習 670
11.8 延伸閱讀 671
第5篇 其 他 資 源
第12章 未來之路 675
12.1 數據資源 675
12.1.1 Python包 676
12.1.2 Seaborn 676
12.1.3 scikit-learn 676
12.2 搜索數據 677
12.3 API 677
12.4 網站 678
12.4.1 金融 678
12.4.2 官方數據 679
12.4.3 健康與經濟 679
12.4.4 社交網絡 680
12.4.5 運動 680
12.4.6 雜項 681
12.5 練習使用數據 681
12.5.1 Kaggle 682
12.5.2 DataCamp 682
12.6 Python練習 682
12.7 小結 684
12.8 練習 684
12.9 延伸閱讀 685
練習答案 693
附錄A 695
數據分析工作流程 695
選擇合適的可視化結果 696
機器學習工作流程 697
展開全部

PANDAS數據分析 作者簡介

斯蒂芬妮·莫林是紐約彭博有限合伙企業(Bloomberg LP)的數據科學家和軟件工程師,負責解決信息安全方面的棘手問題,特別是圍繞異常檢測、構建數據收集工具和知識共享等方面的工作。她在數據科學、設計異常檢測解決方案以及在廣告技術(AdTech)和金融科技(FinTech)行業中利用R和Python的機器學習方面擁有豐富的經驗。
她擁有哥倫比亞大學傅氏基金工程和應用科學學院運籌學學士學位,輔修經濟學、創業與創新。在閑暇時間,她喜歡環游世界、發明新食譜、學習人與計算機之間使用的新語言。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 哈希PC1R1A,哈希CA9300,哈希SC4500-上海鑫嵩实业有限公司 | 心肺复苏模拟人|医学模型|急救护理模型|医学教学模型上海康人医学仪器设备有限公司 | 作文导航网_作文之家_满分作文_优秀作文_作文大全_作文素材_最新作文分享发布平台 | 飞行者联盟-飞机模拟机_无人机_低空经济_航空技术交流平台 | 防水试验机_防水测试设备_防水试验装置_淋雨试验箱-广州岳信试验设备有限公司 | 国产离子色谱仪,红外分光测油仪,自动烟尘烟气测试仪-青岛埃仑通用科技有限公司 | 山东石英砂过滤器,除氟过滤器「价格低」-淄博胜达水处理 | 变色龙PPT-国内原创PPT模板交易平台 - PPT贰零 - 西安聚讯网络科技有限公司 | 电地暖-电采暖-发热膜-石墨烯电热膜品牌加盟-暖季地暖厂家 | 盘煤仪,盘料仪,盘点仪,堆料测量仪,便携式激光盘煤仪-中科航宇(北京)自动化工程技术有限公司 | 软装设计-提供软装装饰和软装配饰及软装陈设的软装设计公司 | 液压中心架,数控中心架,自定心中心架-烟台恒阳机电设计有限公司 行星搅拌机,双行星搅拌机,动力混合机,无锡米克斯行星搅拌机生产厂家 | SPC工作站-连杆综合检具-表盘气动量仪-内孔缺陷检测仪-杭州朗多检测仪器有限公司 | 安徽千住锡膏_安徽阿尔法锡膏锡条_安徽唯特偶锡膏_卡夫特胶水-芜湖荣亮电子科技有限公司 | 不锈钢闸阀_球阀_蝶阀_止回阀_调节阀_截止阀-可拉伐阀门(上海)有限公司 | 莱州网络公司|莱州网站建设|莱州网站优化|莱州阿里巴巴-莱州唯佳网络科技有限公司 | 南京泽朗生物科技有限公司-液体饮料代加工_果汁饮料代加工_固体饮料代加工 | 中国产业发展研究网 - 提供行业研究报告 可行性研究报告 投资咨询 市场调研服务 | 航空障碍灯_高中低光强航空障碍灯_民航许可认证航空警示灯厂家-东莞市天翔航天科技有限公司 | 德州网站制作 - 网站建设设计 - seo排名优化 -「两山建站」 | 造价工程师网,考试时间查询,报名入口信息-网站首页 | 环氧树脂地坪漆_济宁市新天地漆业有限公司 | 衢州装饰公司|装潢公司|办公楼装修|排屋装修|别墅装修-衢州佳盛装饰 | 广州番禺搬家公司_天河黄埔搬家公司_企业工厂搬迁_日式搬家_广州搬家公司_厚道搬迁搬家公司 | 小型气象站_车载气象站_便携气象站-山东风途物联网 | 捆扎机_气动捆扎机_钢带捆扎机-沈阳海鹞气动钢带捆扎机公司 | 球盟会·(中国)官方网站 | 净化工程_无尘车间_无尘车间装修-广州科凌净化工程有限公司 | 304不锈钢无缝管_不锈钢管厂家 - 隆达钢业集团有限公司 | 视觉检测设备_自动化检测设备_CCD视觉检测机_外观缺陷检测-瑞智光电 | 卷筒电缆-拖链电缆-特种柔性扁平电缆定制厂家「上海缆胜」 | 送料机_高速冲床送料机_NC伺服滚轮送料机厂家-东莞市久谐自动化设备有限公司 | 管理会计网-PCMA初级管理会计,中级管理会计考试网站 | 中式装修设计_室内中式装修_【云臻轩】中式设计机构 | 节流截止放空阀-不锈钢阀门-气动|电动截止阀-鸿华阀门有限公司 | RTO换向阀_VOC高温阀门_加热炉切断阀_双偏心软密封蝶阀_煤气蝶阀_提升阀-湖北霍科德阀门有限公司 | 长沙印刷厂-包装印刷-画册印刷厂家-湖南省日大彩色印务有限公司 青州搬家公司电话_青州搬家公司哪家好「鸿喜」青州搬家 | 海外仓系统|国际货代系统|退货换标系统|WMS仓储系统|海豚云 | 工业风机_环保空调_冷风机_工厂车间厂房通风降温设备旺成服务平台 | 机械立体车库租赁_立体停车设备出租_智能停车场厂家_春华起重 | 东莞压铸厂_精密压铸_锌合金压铸_铝合金压铸_压铸件加工_东莞祥宇金属制品 |