中图网(原中国图书网):网上书店,中文字幕在线一区二区三区,尾货特色书店,中文字幕在线一区,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >>
客戶留存數據分析與預測

包郵 客戶留存數據分析與預測

出版社:清華大學出版社出版時間:2023-06-01
開本: 其他 頁數: 416
中 圖 價:¥80.6(6.3折) 定價  ¥128.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

客戶留存數據分析與預測 版權信息

客戶留存數據分析與預測 本書特色

對于任何依賴經常性收入和重復銷售的企業來說,讓客戶保持活躍并持續購買是必不可少的。客戶流失(或“流失”),這種代價高昂且令人沮喪的事情是可以預防的。通過使用本書中介紹的技術,你可以識別客戶流失的預警信號,并學會在客戶離開之前識別并挽留他們。
《客戶留存數據分析與預測》向開發人員和數據科學家傳授經過實踐證明的技術與方法,可以在客戶流失發生之前阻止其發生。本書包含很多來自現實中的示例,介紹如何將原始數據轉換為可衡量的行為指標、計算客戶生命周期價值,并使用人口統計數據改進客戶流失預測。通過遵循 Zuora 首席數據科學家 Carl Gold 的方法,你將獲得高客戶留存率帶來的優勢。
主要內容
● 計算流失指標
● 通過客戶行為預測客戶流失
● 使用客戶細分策略減少客戶流失
● 將客戶流失分析技術應用于其他業務領域
● 使用人工智能技術進行準確的客戶流失預測

客戶留存數據分析與預測 內容簡介

對于任何依賴經常性收入和重復銷售的企業來說,讓客戶保持活躍并持續購買是必不可少的。客戶流失(或“流失”),這種代價高昂且令人沮喪的事情是可以預防的。通過使用本書中介紹的技術,你可以識別客戶流失的預警信號,并學會在客戶離開之前識別并挽留他們。 《客戶留存數據分析與預測》向開發人員和數據科學家傳授經過實踐證明的技術與方法,可以在客戶流失發生之前阻止其發生。本書包含很多來自現實中的示例,介紹如何將原始數據轉換為可衡量的行為指標、計算客戶生命周期價值,并使用人口統計數據改進客戶流失預測。通過遵循 Zuora 首席數據科學家 Carl Gold 的方法,你將獲得高客戶留存率帶來的優勢。 主要內容 ● 計算流失指標 ● 通過客戶行為預測客戶流失 ● 使用客戶細分策略減少客戶流失 ● 將客戶流失分析技術應用于其他業務領域 ● 使用人工智能技術進行準確的客戶流失預測

客戶留存數據分析與預測 目錄

第Ⅰ部分 構建自己的“裝備庫”
第1章 客戶流失 3
1.1 為什么閱讀本書 4
1.1.1 典型的客戶流失場景 5
1.1.2 本書主要內容 6
1.2 對抗客戶流失 6
1.2.1 減少客戶流失的干預措施 7
1.2.2 為什么客戶流失難以對抗 8
1.2.3 有效的客戶指標:防止客戶
流失的利器 11
1.3 本書為何與眾不同 13
1.3.1 實用且透徹 13
1.3.2 模擬案例研究 14
1.4 具有重復用戶交互性的產品 15
1.4.1 支付消費品的費用 16
1.4.2 B2B服務 16
1.4.3 客戶流失與媒體廣告 17
1.4.4 消費者訂閱 17
1.4.5 免費增值商業模式 18
1.4.6 App內購買模式 18
1.5 非訂閱服務的客戶流失場景 18
1.5.1 將“不活躍”看作“流失” 18
1.5.2 免費試用轉換 19
1.5.3 upsell和down sell 19
1.5.4 其他“是/否”客戶預測 19
1.5.5 用戶行為預測 20
1.5.6 其他與客戶流失不同的用例 20
1.6 消費者行為數據 20
1.6.1 常見客戶事件 20
1.6.2 重要的事件 23
1.7 對抗客戶流失的案例分享 24
1.7.1 Klipfolio 24
1.7.2 Broadly 25
1.7.3 Versature 26
1.7.4 社交網絡模擬 27
1.8 使用客戶指標進行
案例研究 27
1.8.1 利用率 28
1.8.2 成功率 30
1.8.3 單位成本 31
1.9 本章小結 34
第2章 測量流失率 35
2.1 定義流失率 38
2.1.1 計算流失率和留存率 39
2.1.2 流失率和留存率的關系 40
2.2 訂閱數據庫 40
2.3 基本的客戶流失計算:
凈留存率 42
2.3.1 凈留存率計算 42
2.3.2 使用SQL計算凈留存率 44
2.3.3 解釋凈留存率 47
2.4 標準流失率計算:基于客戶
數量的流失 49
2.4.1 標準流失率定義 49
2.4.2 用于計算流失率的外連接 50
2.4.3 使用SQL計算標準流失率 51
2.4.4 何時使用標準流失率 53
2.5 基于事件的非訂閱產品
流失率 53
2.5.1 通過事件確定活躍客戶和
流失客戶 54
2.5.2 使用SQL計算基于客戶活躍度
的流失率 54
2.6 高階流失率:MRR流失率 56
2.6.1 MRR流失率的定義和計算 57
2.6.2 使用SQL計算MRR流失率 58
2.6.3 MRR流失率、客戶數流失率與
凈流失率 60
2.7 流失率測量轉換 61
2.7.1 幸存者分析(高級) 61
2.7.2 流失率轉換 63
2.7.3 通過SQL對任意時間窗口內的
流失率進行轉換 64
2.7.4 選擇流失率測量窗口 65
2.7.5 季節性和流失率 66
2.8 本章小結 67
第3章 客戶指標計量 69
3.1 從事件到指標 71
3.2 事件數據倉庫模式 72
3.3 統計某個時間段內的事件 74
3.4 指標周期定義的詳細信息 76
3.4.1 行為周期 76
3.4.2 用于指標測量的時間戳 77
3.5 在不同時間點測量 78
3.5.1 重疊測量窗口 78
3.5.2 時序指標測量 81
3.5.3 保存測量指標 81
3.5.4 保存模擬示例的指標 83
3.6 測量事件屬性的總數和
平均值 84
3.7 指標質量保證 85
3.7.1 測量指標如何隨時間變化 85
3.7.2 QA案例研究 88
3.7.3 檢查指標覆蓋率 90
3.8 事件QA 92
3.8.1 檢查事件如何隨時間變化 92
3.8.2 檢查每個賬戶的事件 95
3.9 選擇行為測量的測量周期 97
3.10 測量賬戶使用期 99
3.10.1 賬戶使用期定義 99
3.10.2 賬戶使用期的遞歸CTE 101
3.10.3 賬戶使用期SQL程序 103
3.11 測量MRR和其他訂閱
指標 106
3.11.1 計算MRR并作為指標 106
3.11.2 特定數量的訂閱 108
3.11.3 計算訂閱單元數量并作為
指標 109
3.11.4 計算計費周期并作為
指標 110
3.12 本章小結 112
第4章 觀察續訂與流失 115
4.1 數據集介紹 116
4.2 如何觀察客戶 117
4.2.1 提前進行觀察 117
4.2.2 觀察續訂和流失的順序 119
4.2.3 創建訂閱數據集 120
4.3 從訂閱中識別活躍期 121
4.3.1 活躍期 121
4.3.2 用于存儲活躍期的模式 122
4.3.3 尋找正在進行的活躍期 123
4.3.4 找到以客戶流失為結束的
活躍期 124
4.4 識別非訂閱產品的活躍期 128
4.4.1 活躍期定義 128
4.4.2 從事件生成數據集的過程 129
4.4.3 用于計算活躍周的SQL 130
4.5 選擇觀察日期 132
4.5.1 平衡流失和非流失觀察 132
4.5.2 選擇觀察日期的算法 133
4.5.3 計算觀察日期的SQL程序 134
4.6 探索客戶流失數據集 137
4.7 導出當前客戶進行細分 141
4.7.1 選擇活躍賬戶和指標 141
4.7.2 通過指標來細分客戶 143
4.8 本章小結 143
第Ⅱ部分 動手實踐
第5章 通過指標理解客戶流失和
客戶行為 147
5.1 指標隊列分析 149
5.1.1 隊列分析背后的思想 150
5.1.2 使用Python進行隊列分析 152
5.1.3 產品使用隊列 155
5.1.4 賬戶使用期隊列 157
5.1.5 計費周期的隊列分析 159
5.1.6 小隊列規模 160
5.1.7 顯著和不顯著的隊列差異 161
5.1.8 具有大量零客戶指標的指標
隊列 162
5.1.9 因果關系:指標是否會導致
客戶流失 163
5.2 總結客戶行為 164
5.2.1 了解指標的分布 164
5.2.2 用Python計算數據集匯總統計
信息 166
5.2.3 篩選罕見指標 168
5.2.4 邀請業務人員共同保證數據
質量 168
5.3 指標分數 169
5.3.1 指標分數背后的想法 169
5.3.2 指標分數算法 170
5.3.3 使用Python計算指標分數 171
5.3.4 使用評分指標進行隊列
分析 173
5.3.5 MRR的隊列分析 175
5.4 刪除無效的觀察 176
5.4.1 從流失分析中刪除非付費
客戶 177
5.4.2 在Python中根據指標閾值
刪除觀察 178
5.4.3 從罕見指標分析中刪除零
測量值 179 5.4.4 脫離行為:與流失率增加相關
的指標 180
5.5 使用隊列分析細分客戶 182
5.5.1 細分過程 182
5.5.2 選擇細分標準 182
5.6 本章小結 183
第6章 客戶行為之間的關系 185
6.1 行為之間的相關性 186
6.1.1 “指標對”之間的相關性 186
6.1.2 使用Python計算相關性 190
6.1.3 使用相關性矩陣了解指標集
之間的相關性 191
6.1.4 案例研究的相關性矩陣 193
6.1.5 在Python中計算相關性矩陣 194
6.2 對行為指標組計算平均值 196
6.2.1 為什么要計算相關性指標分數
的平均值 196
6.2.2 使用載荷矩陣(權重矩陣)
計算平均分數 197
6.2.3 載荷矩陣的案例研究 198
6.2.4 在Python中應用載荷矩陣 200
6.2.5 基于指標組平均分數的流失
隊列分析 202
6.3 發現相關性指標組 204
6.3.1 通過聚類對指標進行相關性
分組 204
6.3.2 在Python中計算聚類相關性 206
6.3.3 將分數的平均值作為分數載荷
矩陣的權重 211
6.3.4 運行指標分組及分組隊列分析
列表 212
6.3.5 為聚類選擇相關性閾值 213
6.4 向業務人員解釋相關性
指標組 215
6.5 本章小結 217
第7章 使用高級指標對客戶
進行細分 219
7.1 比率指標 221
7.1.1 何時以及為什么使用比率
指標 221
7.1.2 如何計算比率指標 224
7.1.3 比率指標案例研究 229
7.1.4 模擬社交網絡的其他比率指標 231
7.2 指標占比 232
7.2.1 計算指標占比 232
7.2.2 案例研究:帶有兩個指標的
總指標百分比 235
7.2.3 帶有多個指標的總指標百分比
案例研究 237
7.3 衡量變化的指標 238
7.3.1 衡量活躍水平的變化 238
7.3.2 具有異常值(肥尾)的
指標分數 242
7.3.3 測量自上次活躍事件發生
以來的時間 246
7.4 縮放指標時間段 249
7.4.1 將較長周期的指標轉換為
較短的引用周期指標 250
7.4.2 估算新賬戶的指標 253
7.5 用戶指標 258
7.5.1 測量活躍用戶 258
7.5.2 活躍用戶指標 260
7.6 比率選擇 262
7.6.1 為什么使用比率,還有什么
選擇 262
7.6.2 使用哪些比率 263
7.7 本章小結 264
第Ⅲ部分 特殊技巧與方法
第8章 預測客戶流失 269
8.1 通過模型預測流失 270
8.1.1 用模型進行概率預測 270
8.1.2 客戶參與和留存率 271
8.1.3 參與度和客戶行為 272
8.1.4 偏移量將觀察到的流失率與
S曲線相匹配 274
8.1.5 邏輯回歸概率計算 275
8.2 審查數據準備 276
8.3 擬合客戶流失模型 279
8.3.1 邏輯回歸的結果 279
8.3.2 邏輯回歸代碼 281
8.3.3 解釋邏輯回歸結果 284
8.3.4 邏輯回歸案例分析 286
8.3.5 模型校準和歷史流失概率 288
8.4 預測客戶流失概率 289
8.4.1 準備當前客戶數據集以
進行預測 289
8.4.2 準備當前客戶數據用于
客戶細分 294
8.4.3 使用保存的模型進行預測 294
8.4.4 案例學習:預測 297
8.4.5 預測校準和預測漂移 298
8.5 流失預測的陷阱 300
8.5.1 相關性指標 300
8.5.2 異常值 302
8.6 客戶生命周期價值 306
8.6.1 CLV的含義 306
8.6.2 從客戶流失到預期客戶
生命周期 308
8.6.3 CLV公式 309
8.7 本章小結 310
第9章 預測準確性和機器學習 313
9.1 衡量客戶流失預測的
準確性 314
9.1.1 為什么不使用標準準確度
測量來衡量流失率 314
9.1.2 使用AUC衡量客戶流失預測
的準確性 317
9.1.3 使用提升測量客戶流失預測
的準確性 319
9.2 歷史準確性模擬:回測 323
9.2.1 什么是回測以及為什么
進行回測 324
9.2.2 回測代碼 325
9.2.3 回測注意事項和陷阱 327
9.3 回歸控制參數 328
9.3.1 控制回歸權重的強度和數量 328
9.3.2 帶有控制參數的回歸 329
9.4 通過測試選擇回歸參數
(交叉驗證) 331
9.4.1 交叉驗證 331
9.4.2 交叉驗證代碼 332
9.4.3 回歸交叉驗證案例研究 336
9.5 使用機器學習預測客戶
流失風險 336
9.5.1 XGBoost學習模型 337
9.5.2 XGBoost 交叉驗證 338
9.5.3 比較XGBoost與回歸的
準確度 341
9.5.4 高級指標和基本指標的比較 342
9.6 利用機器學習預測對客戶
進行細分 344
9.7 本章小結 346
第10章 客戶流失的人口統計特征
和企業統計特征 347
10.1 人口統計和企業統計
數據集 348
10.1.1 人口統計學和企業統計數據
的類型 348
10.1.2 社交網絡模擬的賬戶數據
模型 349
10.1.3 人口統計數據集的SQL 350
10.2 具有人口統計和企業統計
類別的流失隊列 353
10.2.1 人口統計類別的流失率
隊列 353
10.2.2 流失率置信區間 354 10.2.3 將人口統計隊列與置信區間
進行比較 355
10.3 對人口統計類別進行
分組 361
10.3.1 用映射字典表示分組 361
10.3.2 分組類別的隊列分析 362
10.3.3 設計類別分組 364
10.4 基于日期和數字的人口統計
數據的流失分析 366
10.5 利用人口統計數據進行
流失率預測 367
10.5.1 將文本字段轉換為虛擬
變量 367
10.5.2 僅用分類虛擬變量預測
流失率 370
10.5.3 將虛擬變量與數值數據
相結合 372
10.5.4 結合人口統計數據和指標以
預測客戶流失 375
10.6 使用人口統計數據細分
當前客戶 378
10.7 本章小結 383
第11章 對抗客戶流失 385
11.1 計劃你自己的對抗客戶
流失策略 385
11.1.1 數據處理和分析代碼清單 387
11.1.2 用于與業務人員溝通的
檢查清單 389
11.2 使用你自己的數據運行
本書的代碼清單 391
11.2.1 將數據加載到本書的數據
schema中 391
11.2.2 在你自己的數據上運行程序 392
11.3 將本書的程序移植到不同
的環境中 393
11.3.1 移植SQL程序 393
11.3.2 移植Python程序 393 11.4 了解更多并保持聯絡 394
11.4.1 作者的博客網站和社交
媒體 394
11.4.2 客戶流失基準信息的
來源 394
11.4.3 有關客戶流失的其他
信息來源 395
11.4.4 幫助減少客戶流失的產品 395
11.5 本章小結 395
展開全部

客戶留存數據分析與預測 作者簡介

Carl Gold是Zuora,Inc.的首席數據科學家。Zuora是一個綜合訂閱管理平臺和新上市的硅谷獨角獸公司,在全球擁有1000多家客戶。Zuora的客戶來自眾多行業,包括軟件(軟件即服務,SaaS)、媒體、旅游服務、消費包裝商品、云服務、物聯網(Internet of Things,IoT)和電信運營商。Zuora在訂閱和經常性收入方面是公認的領導者。Carl于2015年加入Zuora,擔任首席數據科學家,并為Zuora的客戶分析產品Zuora Insights開發了預測分析系統。

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 华夏医界网_民营医疗产业信息平台_民营医院营销管理培训 | 信阳市建筑勘察设计研究院有限公司 | 交联度测试仪-湿漏电流测试仪-双85恒温恒湿试验箱-常州市科迈实验仪器有限公司 | 全自动不干胶贴标机_套标机-上海今昂贴标机生产厂家 | 影合社-影视人的内容合作平台| 正压送风机-多叶送风口-板式排烟口-德州志诺通风设备 | 今日热点_实时热点_奇闻异事_趣闻趣事_灵异事件 - 奇闻事件 | 全自动包装机_灌装机生产厂家-迈驰包装设备有限公司 | 起好名字_取个好名字_好名网免费取好名在线打分 | 重庆钣金加工厂家首页-专业定做监控电视墙_操作台 | 海峰资讯 - 专注装饰公司营销型网站建设和网络营销培训 | 德国EA可编程直流电源_电子负载,中国台湾固纬直流电源_交流电源-苏州展文电子科技有限公司 | 防水套管-柔性防水套管-刚性防水套管-上海执品管件有限公司 | 鹤壁创新仪器公司-全自动量热仪,定硫仪,煤炭测硫仪,灰熔点测定仪,快速自动测氢仪,工业分析仪,煤质化验仪器 | 凝胶成像仪,化学发光凝胶成像系统,凝胶成像分析系统-上海培清科技有限公司 | 智能垃圾箱|垃圾房|垃圾分类亭|垃圾分类箱专业生产厂家定做-宿迁市传宇环保设备有限公司 | 3d可视化建模_三维展示_产品3d互动数字营销_三维动画制作_3D虚拟商城 【商迪3D】三维展示服务商 广东健伦体育发展有限公司-体育工程配套及销售运动器材的体育用品服务商 | 广州食堂承包_广州团餐配送_广州堂食餐饮服务公司 - 旺记餐饮 | 自动配料系统_称重配料控制系统厂家| 广东风淋室_广东风淋室厂家_广东风淋室价格_广州开源_传递窗_FFU-广州开源净化科技有限公司 | 纳米涂料品牌 防雾抗污纳米陶瓷涂料厂家_虹瓷科技 | 小型高低温循环试验箱-可程式高低温湿热交变试验箱-东莞市拓德环境测试设备有限公司 | 西安文都考研官网_西安考研辅导班_考研培训机构_西安在职考研培训 | 光照全温振荡器(智能型)-恒隆仪器 | 超声波成孔成槽质量检测仪-压浆机-桥梁预应力智能张拉设备-上海硕冠检测设备有限公司 | 东莞猎头公司_深圳猎头公司_广州猎头公司-广东万诚猎头提供企业中高端人才招聘服务 | 余姚生活网_余姚论坛_余姚市综合门户网站 | 偏心半球阀-电动偏心半球阀-调流调压阀-旋球阀-上欧阀门有限公司 | 锂离子电池厂家-山东中信迪生电源| 招商帮-一站式网络营销服务|搜索营销推广|信息流推广|短视视频营销推广|互联网整合营销|网络推广代运营|招商帮企业招商好帮手 | 鹤壁创新仪器公司-全自动量热仪,定硫仪,煤炭测硫仪,灰熔点测定仪,快速自动测氢仪,工业分析仪,煤质化验仪器 | 长沙一级消防工程公司_智能化弱电_机电安装_亮化工程专业施工承包_湖南公共安全工程有限公司 | 打造全球沸石生态圈 - 国投盛世| 冷水机-冰水机-冷冻机-冷风机-本森智能装备(深圳)有限公司 | 深圳宣传片制作-企业宣传视频制作-产品视频拍摄-产品动画制作-短视频拍摄制作公司 | 桥架-槽式电缆桥架-镀锌桥架-托盘式桥架 - 上海亮族电缆桥架制造有限公司 | 真空粉体取样阀,电动楔式闸阀,电动针型阀-耐苛尔(上海)自动化仪表有限公司 | 西装定制/做厂家/公司_西装订做/制价格/费用-北京圣达信西装 | 高压贴片电容|贴片安规电容|三端滤波器|风华电容代理南京南山 | 广西绿桂涂料--承接隔热涂料、隔音涂料、真石漆、多彩仿石漆等涂料工程双包施工 | 动库网动库商城-体育用品专卖店:羽毛球,乒乓球拍,网球,户外装备,运动鞋,运动包,运动服饰专卖店-正品运动品网上商城动库商城网 - 动库商城 |