中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
Python機器學習技術:模型關系管理

包郵 Python機器學習技術:模型關系管理

作者:丁亞軍
出版社:電子工業出版社出版時間:2023-02-01
開本: 其他 頁數: 284
中 圖 價:¥53.3(4.9折) 定價  ¥109.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
溫馨提示:5折以下圖書主要為出版社尾貨,大部分為全新(有塑封/無塑封),個別圖書品相8-9成新、切口
有劃線標記、光盤等附件不全詳細品相說明>>
本類五星書更多>

Python機器學習技術:模型關系管理 版權信息

  • ISBN:9787121448430
  • 條形碼:9787121448430 ; 978-7-121-44843-0
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

Python機器學習技術:模型關系管理 本書特色

《Python機器學習技術:模型關系管理》以案例分析為主線介紹不同的集成學習方法,首先闡述弱集成學習如何解決項目痛點問題,然后以痛點為起點,集中討論強集成學習如何解構子項目問題,*后通過深度學習分析非結構化數據。 《Python機器學習技術:模型關系管理》的核心框架: l 特征工程技術 l 機器學習算法 l 弱集成學習:決策樹集成 l 強集成學習:“特征工程+機器學習”集成 l 混合專家(或深度學習):“神經網絡+神經網絡”集成 《Python機器學習技術:模型關系管理》的特色賣點: l 以小數據為啟程,重點闡述大數據技術的原理與流程 l 應用常用依賴包,編寫簡潔代碼,實現數據分析 l 以集成學習為核心知識點,展開對相關知識的討論 l 借助描述性案例講解模型配置,借助項目案例講解數據挖掘流程 l 以描述性挖掘、歸因性探索、預測性應用并舉的方式分析案例 l 行為中涉及的數學公式大多輔以圖形理解,對數理知識的要求并不高

Python機器學習技術:模型關系管理 內容簡介

本書的主體內容包括機器學習概念與特征工程、機器學習技術、模型關系管理,其中,模型關系管理部分主要介紹了弱集成學習、強集成學習和混合專家模型。弱集成學習是指使用機器學習中的弱分類器實現模型準確度和穩定性之間的平衡。強集成學習是指協同特征工程與強分類器形成強集成學習環境。混合專家模型是指通過神經網絡集成和網絡結構設計形成深度學習框架。本書以案例分析為主線介紹不同的集成學習方法,首先闡述弱集成學習如何解決項目痛點問題,然后以痛點為起點,集中討論強集成學習如何解構子項目問題,*后通過深度學習分析非結構化數據。在每個案例中,歸因問題是分析的核心,提供了解析歸因問題的一系列方法,以作者多年的項目經驗為基礎,展示 Python 數據分析的強大之處。

Python機器學習技術:模型關系管理 目錄

第 1 部分 機器學習概念與特征工程
第 1 章 機器學習的基礎概念 / 002
1.1 數據源 / 002
1.1.1 數值:單元格 / 002
1.1.2 圖像:像素點 / 003
1.1.3 文本:詞向量 / 004
1.2 模型的基本形式:回歸 / 006
1.2.1 文氏圖:方差分解 / 006
1.2.2 分布圖:分布與隨機 / 007
1.2.3 角色:監督與非監督 / 008
1.2.4 模型應用:歸因與預測 / 008
1.3 模型與算法 / 013
1.3.1 模型進化:從 1.0 到 4.0 / 013
1.3.2 算法驅動:參數與超參數 / 014
1.4 SMD 學習技術 / 014
1.4.1 統計學習:線性回歸 / 014
1.4.2 機器學習:支持向量機 / 015
1.4.3 深度學習:神經網絡 / 016
1.5 機器學習誤差源 / 018
1.5.1 誤差源 / 018
1.5.2 偏差與方差窘境 / 019
1.6 模型擬合診斷 / 020
1.6.1 模型擬合 / 020
1.6.2 模型的評估指標 / 021
1.7 數據分區技術 / 024
1.7.1 數據分區:訓練與評估 / 025
1.7.2 交叉驗證:分區的升級 / 026
1.8 集成學習方法 / 028
1.8.1 強分類器:特征工程+模型 / 029
1.8.2 弱分類器:模型+模型 / 029
1.8.3 混合專家:神經網絡 / 029
1.9 運算加速度 / 029
1.9.1 大數據挑戰 / 030
1.9.2 數據的高效運算 / 030

第 2 章 特征工程技術 / 032
2.1 數據變換 / 032
2.1.1 特征規范化:對中處理 / 033
2.1.2 樣本規范化:距離相似度 / 035
2.2 數據編碼 / 036
2.2.1 獨熱編碼:無序性 / 037
2.2.2 數據分箱:業務標簽 / 038
2.3 缺失值填補 / 039
2.3.1 中位數填補:穩健 / 039
2.3.2 *近鄰填補:高維 / 039
2.3.3 隨機森林填補:“賢內助” / 041
2.4 異常值診斷 / 045
2.4.1 單變量異常值:描述 / 045
2.4.2 多變量異常值:監督 / 046
2.4.3 多變量異常值:非監督 / 046
2.4.4 非結構式異常值:自編碼器 / 047
2.5 共線性的危害 / 053
2.5.1 雙變量共線:新特征 / 053
2.5.2 多變量共線:特征分解 / 055
2.5.3 特征組合技術 / 058
2.6 特征篩選技術 / 059
2.6.1 經驗:“站在誰的肩膀上” / 061
2.6.2 相關:相關系數 / 061
2.6.3 回歸:特征篩選 / 061
2.6.4 降維:線性與非線性 / 062
2.6.5 工具:“指南針” / 065
2.7 聚類技術:市場細分 / 066

第 2 部分 機器學習技術
第 3 章 機器學習準備 / 069
3.1 機器學習的數學基礎 / 069
3.1.1 微積分基礎 / 069
3.1.2 向量運算:相關分析 / 072
3.1.3 矩陣運算:回歸模型 / 074
3.1.4 張量運算:神經網絡 / 076
3.2 機器學習理解 / 077
3.2.1 連續型因變量:線性回歸 / 077
3.2.2 分類型因變量:邏輯回歸 / 081
3.3 機器學習算法 / 083
3.3.1 *小二乘法:準確度 / 083
3.3.2 *大似然估計法:測量 / 083
3.3.3 隨機梯度下降法:大數據 / 085

第 4 章 統計學:回歸“進化” / 087
4.1 大數據與回歸模型 / 087
4.1.1 統計學的煩惱 / 087
4.1.2 線性回歸的進化 / 088
4.2 正則化約束 / 089
4.2.1 正則化技術的原理 / 089
4.2.2 LASSO 回歸與嶺回歸 / 090
4.2.3 彈性網的特征 / 091
4.3 案例:隨機梯度下降回歸與歸因解釋 / 092

第 5 章 神經網絡模型:預測 / 096
5.1 感知器模型 / 096
5.1.1 與或四門通往何方 / 096
5.1.2 感知器=線性回歸 / 099
5.1.3 激活函數為何是非線性的 / 100
5.1.4 感知器=CPU / 102
5.2 神經網絡模型 / 102
5.2.1 感知器集成:網絡結構 / 102
5.2.2 前向傳播技術:聯立方程 / 105
5.2.3 反向傳播技術:自動微分 / 107
5.2.4 網絡結構設計:隱含層 / 110
5.2.5 神經網絡專題 1:特征工程 / 111
5.2.6 神經網絡專題 2:維度災難 / 112
5.3 案例:數據分析流與神經網絡 / 112


第 6 章 決策樹:歸因與可視化 / 122
6.1 決策樹模型原理 / 122
6.1.1 熵與相關性 / 122
6.1.2 決策樹概覽 / 123
6.1.3 特征分叉運算 / 124
6.1.4 特征選擇運算 / 125
6.1.5 決策樹與剪枝 / 128
6.2 樹模型的特征 / 128
6.3 兩類歸因:決策樹與邏輯回歸 / 130
6.3.1 樹形圖解釋 / 130
6.3.2 S 形圖解釋 / 131

第 7 章 支持向量機:高維數據 / 135
7.1 支持向量機簡介 / 135
7.1.1 超平面 / 135
7.1.2 點距超平面 / 137
7.2 線性支持向量機 / 138
7.2.1 硬間隔:嚴格邊界 / 138
7.2.2 軟間隔:松弛邊界 / 138
7.3 非線性與核技巧 / 139
7.3.1 理解核技巧 / 139
7.3.2 核函數及其應用 / 140
7.3.3 支持向量機:經驗匯總 / 141
7.4 支持向量機模型運算 / 142
7.5 案例:圖像識別與預測分類 / 144
第 8 章 關聯分析 / 148
8.1 數據源格式 / 148
8.1.1 標準數據格式 / 148
8.1.2 概念的層級性 / 149
8.2 關聯規則與度量指標 / 150
8.2.1 關聯規則度量 / 150
8.2.2 頻繁項集 / 151
8.2.3 Apriori 算法 / 151
8.2.4 強關聯規則 / 153
8.3 案例:商品關聯過濾與營銷推薦 / 154

第 3 部分 模型關系管理
第 9 章 集成學習方法:弱集成 / 160
9.1 集成學習:弱分類器 / 160
9.1.1 自抽樣法 / 161
9.1.2 套袋法與隨機森林 / 162
9.1.3 套袋法的運算 / 163
9.1.4 隨機森林與特征工程 / 165
9.1.5 提升法與提升樹 / 165
9.1.6 提升法的運算 / 167
9.1.7 XGBoost 的原理與應用 / 170
9.2 集成學習:聚合策略 / 173
9.2.1 簡單投票法 / 174
9.2.2 堆疊法 / 175
9.2.3 理論判斷法 / 176
9.2.4 元分析法 / 177
9.2.5 結構方程模型 / 178

第 10 章 多階段模型管理:強集成 / 181
10.1 特征工程與模型集成 / 181
10.1.1 機器學習與模型關系管理 / 181
10.1.2 “主成分+”與“聚類+”模式 / 182
10.2 多階段模型管理與案例解析 / 183
10.2.1 線性與非線性:決策樹+回歸 / 184
10.2.2 異常診斷一:異常評分+主次歸因+規則歸因 / 190
10.2.3 異常診斷二:異常規則+復雜歸因 / 195
10.2.4 經驗法:貝葉斯規則+回歸 / 199
10.2.5 不平衡修正:平衡性抽樣+模型集成 / 208
10.2.6 數據源:問卷+數據庫 / 212

第 11 章 深度學習模型:混合專家 / 219
11.1 全連接神經網絡:數值分析 / 220
11.1.1 全連接神經網絡規則 / 220
11.1.2 梯度爆炸與梯度消失 / 221
11.1.3 全連接層:正則化 / 224
11.1.4 構建全連接神經網絡 / 224
11.2 卷積神經網絡:圖像識別 / 225
11.2.1 卷積層:核運算 / 226
11.2.2 池化層:標準化 / 232
11.2.3 全連接層:信息傳遞 / 233
11.2.4 構建卷積神經網絡 / 234
11.3 循環神經網絡:自然語言處理 / 237
11.3.1 概率語言模型 / 237
11.3.2 循環神經網絡 / 239
11.3.3 長短期記憶網絡 / 241
11.3.4 構建循環神經網絡 / 244

第 12 章 自動化機器學習 / 246
12.1 自動化與集成學習 / 246
12.1.1 自動化集成 / 246
12.1.2 TPOT 配置 / 247
12.1.3 案例:模型復雜度評估 / 248
12.2 數據分析流水線 / 251
12.2.1 數據分析流 / 252
12.2.2 模型失效周期 / 255
12.2.3 知識發現與模型 / 258
12.2.4 流水線技術準備 / 259
12.2.5 創建復雜流水線 / 261
12.3 超參數與高效運行 / 265
12.3.1 熱啟動 / 266
12.3.2 隨機搜索 / 266
12.3.3 貝葉斯搜索 / 268
12.3.4 增量學習 / 269
總結與展望 / 272
展開全部

Python機器學習技術:模型關系管理 作者簡介

丁亞軍: 高級顧問 經管之家數據科學研究院榮譽專家 電子工業出版社大數據專家委員組評委 國內某咨詢公司簽約顧問 經管之家培訓中心認證講師 研究方向 商CRM數據挖掘 市場調查研究 工業產品質量監控 機器學習與數據挖掘 深度學習算法 銀行風控與風險評分卡

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 变位机,焊接变位机,焊接变位器,小型变位机,小型焊接变位机-济南上弘机电设备有限公司 | 脑钠肽-白介素4|白介素8试剂盒-研域(上海)化学试剂有限公司 | 六维力传感器_六分量力传感器_模腔压力传感器-南京数智微传感科技有限公司 | 换链神器官网-友情链接交换、购买交易于一体的站长平台 | 恒压供水控制柜|无负压|一体化泵站控制柜|PLC远程调试|MCGS触摸屏|自动控制方案-联致自控设备 | 企业微信营销_企业微信服务商_私域流量运营_艾客SCRM官网 | 帽子厂家_帽子工厂_帽子定做_义乌帽厂_帽厂_制帽厂 | 苹果售后维修点查询,苹果iPhone授权售后维修服务中心 – 修果网 拼装地板,悬浮地板厂家,悬浮式拼装运动地板-石家庄博超地板科技有限公司 | 扒渣机,铁水扒渣机,钢水扒渣机,铁水捞渣机,钢水捞渣机-烟台盛利达工程技术有限公司 | 防水试验机_防水测试设备_防水试验装置_淋雨试验箱-广州岳信试验设备有限公司 | 磨煤机配件-高铬辊套-高铬衬板-立磨辊套-盐山县宏润电力设备有限公司 | 座椅式升降机_无障碍升降平台_残疾人升降平台-南京明顺机械设备有限公司 | DAIKIN电磁阀-意大利ATOS电磁阀-上海乾拓贸易有限公司 | 模具硅橡胶,人体硅胶,移印硅胶浆厂家-宏图硅胶科技 | 全自动真空上料机_粉末真空上料机_气动真空上料机-南京奥威环保科技设备有限公司 | 动库网动库商城-体育用品专卖店:羽毛球,乒乓球拍,网球,户外装备,运动鞋,运动包,运动服饰专卖店-正品运动品网上商城动库商城网 - 动库商城 | 仓储货架_南京货架_钢制托盘_仓储笼_隔离网_环球零件盒_诺力液压车_货架-南京一品仓储设备制造公司 | 对照品_中药对照品_标准品_对照药材_「格利普」高纯中药标准品厂家-成都格利普生物科技有限公司 澳门精准正版免费大全,2025新澳门全年免费,新澳天天开奖免费资料大全最新,新澳2025今晚开奖资料,新澳马今天最快最新图库 | 北京普辉律师事务所官网_北京律师24小时免费咨询|法律咨询 | 液压扳手-高品质液压扳手供应商 - 液压扳手, 液压扳手供应商, 德国进口液压拉马 | 斗式提升机,斗式提升机厂家-淄博宏建机械有限公司 | 常州企业采购平台_常州MRO采购公司_常州米孚机电设备有限公司 | 阿米巴企业经营-阿米巴咨询管理-阿米巴企业培训-广东键锋企业管理咨询有限公司 | 彼得逊采泥器-定深式采泥器-电动土壤采样器-土壤样品风干机-常州索奥仪器制造有限公司 | 背压阀|减压器|不锈钢减压器|减压阀|卫生级背压阀|单向阀|背压阀厂家-上海沃原自控阀门有限公司 本安接线盒-本安电路用接线盒-本安分线盒-矿用电话接线盒-JHH生产厂家-宁波龙亿电子科技有限公司 | 谷梁科技| 北京网站建设公司_北京网站制作公司_北京网站设计公司-北京爱品特网站建站公司 | 超声骨密度仪-动脉硬化检测仪器-人体成分分析仪厂家/品牌/价格_南京科力悦 | 物流之家新闻网-最新物流新闻|物流资讯|物流政策|物流网-匡匡奈斯物流科技 | MOOG伺服阀维修,ATOS比例流量阀维修,伺服阀维修-上海纽顿液压设备有限公司 | 拉曼光谱仪_便携式|激光|显微共焦拉曼光谱仪-北京卓立汉光仪器有限公司 | 杭州翻译公司_驾照翻译_专业人工翻译-杭州以琳翻译有限公司官网 组织研磨机-高通量组织研磨仪-实验室多样品组织研磨机-东方天净 | 不锈钢复合板|钛复合板|金属复合板|南钢集团安徽金元素复合材料有限公司-官网 | 事迹材料_个人事迹名人励志故事| 无线遥控更衣吊篮_IC卡更衣吊篮_电动更衣吊篮配件_煤矿更衣吊篮-力得电子 | 小青瓦丨古建筑瓦丨青瓦厂家-宜兴市徽派古典建筑材料有限公司 | 电梯乘运质量测试仪_电梯安全评估测试仪-武汉懿之刻 | 蓝牙音频分析仪-多功能-四通道-八通道音频分析仪-东莞市奥普新音频技术有限公司 | ISO9001认证咨询_iso9001企业认证代理机构_14001|18001|16949|50430认证-艾世欧认证网 | 2025黄道吉日查询、吉时查询、老黄历查询平台- 黄道吉日查询网 | AGV叉车|无人叉车|AGV智能叉车|AGV搬运车-江西丹巴赫机器人股份有限公司 |