-
>
宇宙、量子和人類心靈
-
>
氣候文明史
-
>
南極100天
-
>
考研數(shù)學(xué)專題練1200題
-
>
希格斯:“上帝粒子”的發(fā)明與發(fā)現(xiàn)
-
>
神農(nóng)架疊層石:10多億年前遠(yuǎn)古海洋微生物建造的大堡礁
-
>
聲音簡史
高重子密度下QCD物質(zhì)的性質(zhì)(英文版) 版權(quán)信息
- ISBN:9787030747204
- 條形碼:9787030747204 ; 978-7-03-074720-4
- 裝幀:一般膠版紙
- 冊數(shù):暫無
- 重量:暫無
- 所屬分類:>
高重子密度下QCD物質(zhì)的性質(zhì)(英文版) 內(nèi)容簡介
在過去的二十年里,相對論重離子對撞機(jī)(RHIC)在質(zhì)心能量的廣泛范圍內(nèi)提供了大量的數(shù)據(jù)。在RHIC關(guān)閉并轉(zhuǎn)向未來的電子離子對撞機(jī)(EIC)之后,科學(xué)的優(yōu)先事項(xiàng)是什么?未來高能核對撞的重點(diǎn)是什么?大重子密度下QCD的熱力學(xué)特性是什么?在高重子密度下,夸克-膠子等離子體和強(qiáng)子物質(zhì)之間的相邊界在哪里?如何將在高能核碰撞中學(xué)到的熱力學(xué)與天體物理學(xué)聯(lián)系起來,僅舉幾個(gè)例子,緊湊恒星的內(nèi)部結(jié)構(gòu),也許更有趣的是中子星合并的動力學(xué)過程?雖然大多數(shù)粒子物理學(xué)家對暗物質(zhì)感興趣,我們應(yīng)該把重點(diǎn)放在可見物質(zhì)的問題上!多個(gè)重離子加速器綜合體正在建設(shè)中,如:俄國JINR的NICA(3-11GeV),德國GSI的FAIR(2-4.9GeVSIS100),中國的HIAF(2-4GeV)。這些裝置將在2025年或更早的時(shí)候投入運(yùn)行。此外,重離子碰撞也在J-PARC中被積極討論。本書是該領(lǐng)域許多專家的集體工作,集中討論了上述一些基本問題。我們相信,通過回答這些問題將揭開高重子密度強(qiáng)相互作用物質(zhì)性質(zhì)的神秘面紗,進(jìn)一步加深我們對宇宙演化以及可見物質(zhì)結(jié)構(gòu)的理解。
高重子密度下QCD物質(zhì)的性質(zhì)(英文版) 目錄
1 QCD Phase Structure at Finiteuaryon Density 1
H.-T.Ding,w.J.Fu,R Gao,M.Huang,X.G.Huang,F(xiàn).Karsch,J.F.Liao,X.F.Luo,B.Mohanty,T.Nonaka,P.Petreczky,K.Redlich,c.D.Roberts,and N.Xu
2 Nuclear Matter Under Extreme External Fields 77
X.Q.Huang,Z.T.Liang,J.F.Liao,s.Pu,s.Z.Shi,s.Singha,A.H.Tang,R Q.Wang,Q.Wang,and Y.Yin
3 Dynamical Evolution of Heavy-Ion Collisions 135
H.Elfner,J.Y.Jia,Z.W.Lin,Y Nara,L.G.Pang,p Shen,S.s.Shi,M.Stephanov,L.Yan,Y.Yin,and R F.Zhuang
4 uclear Matter at High Density and Equation of State 183
L.w.Chen,X.Dong,IC Fukuwhima,H.Galatyuk,Herrmann,B.Hong,A.Kisiel,Y.Leifels,B.A.Li,R.Rapp,H.Sako,J.Stroth,F(xiàn).Q.Wang,z.G.Xiao,N.Xu,R.X.Xu,Y.F.Zhang,and X.L.Zhu
Appendix:Concluding Remark 287
高重子密度下QCD物質(zhì)的性質(zhì)(英文版) 節(jié)選
Chapter 1 QCD Phase Structure at Finite Baryon Density H.-T. Ding,W. J. Fu, F. Gao, M. Huang, X. G. Huang, F. Karsch,J. F. Liao, X. F. Luo, B. Mohanty, T. Nonaka, P. Petreczky,K. Redlich, C. D. Roberts, and N. Xu 1.1 Strong Interaction at Finite Temperature and Baryon Density 1.1.1 Path Integral Formulation of QCD Thermodynamics The equilibrium thermodynamics of elementary particles interacting only through the strong force is controlled by Quantum ChromoDynamics. Its partition function can be expressed in terms of a Euclidean path integral. The grand canonical partition function,,is given by an integral over the fundamental quark and gluon (Au) fields. In addition to its dependence on volume (V), temperature (T) and a set of Nf chemical potentials, the partition function implicitly depends on the masses, of the Nf different quark flavors. In Euclidean space-time, which is obtained from the Minkowski formulation by substituting t ir with r g R, the QCD Lagrangian is given by (1.1) where Greek letters are spinor indices,is the color index, Nc is the number of colors, and is the mass of quarks with flavor.The covariant derivative 0Eand the field strength tensor are given by (1-2) (1.3) Here are the gauge fields, are the quark (antiquark) fields, Aa are the generators of, fabc are the corresponding structure constants,are the Euclidean Dirac matrices obeying, and g is the bare coupling constant. In the Euclidean path integral formalism, the partition function of QCD is then given by (1.4) with the Euclidean action (1.5) Here we have suppressed the dependence of the Euclidean Lagrangian and action on the fields but have stressed explicitly their dependence on the various quark chemical potentials that couple to the conserved quark number currents (1-6) The thermal expectation value of physical observables O can be obtained through (1.7) Basic thermodynamic quantities like the pressure (P), energy density (e), or net-quark number density n f can be obtained from the logarithm of the partition function using standard thermodynamic relations, (1.8) (1.9) (1.10) where the chemical potentials are introduced in units of temperature, In fact, the QCD partition function depends on chemical potentials only through these dimensionless combinations, which are the logarithms of the fugacities. The numerical analysis of thermodynamic observables at non-vanishing chemical potential, is difficult in lattice regularized QCD. A viable approach that circumvents the so-called sign problem in lattice QCD at, suitable for moderate values of the chemical potentials, is to consider Taylor expansions for thermodynamic observables. The starting point for such an analysis is the Taylor expansion of the pressure, it reads (1.11) where the expansion coefficients are dimensionless, generalized susceptibilities that can be evaluated at = 0, (1.12) The set of hadron chemical potentials, related to conserved quantum numbers, and the set of quark flavor chemical potentials are easily related to each other, (1-13) With this it is straightforward to rewrite the Taylor series given in Eq. (1.11) in terms of quark chemical potentials, also in terms of baryon number (B), electric charge (Q), and strangeness (5) chemical potentials, (1.14) where the expansion coefficients can again be evaluated at x = 0, (1.15) Fluctuations of and correlations among conserved charges, i.e., baryon numbers (B), electric charge (Q), and strangeness (S), have been long considered as sensitive observables to probe the QCD phase structure. Experimental proxies, like proton, kaons are used for measurements of mean, variance, skewness, and kurtosis of conversed charges. Expressions for the skewness, kurtosis, hyper-skewness, and hyper-kurtosis ratios of conserved charges x = B,Q and S are listed as follows: (1.16) (1.17) (1.18) (1.19) where is the generalized susceptibility defined as the n-th order derivative of pressure with respect to chemical potential .On the lattice can be computed by Taylor expanding the pressure obtained either at zero baryon chemical potential or at non-zero imaginary chemical potential up to a certain order in This renders the comparison of QCD results with experimental measurement possible. Although many effects, e.g., non-equilibrium effects, detector effects, etc.can make the comparison between theory and experiment difficult in practice, a baseline for thermally equilibrated QCD, provided by Lattice QCD computations as well as from,functional renormalization group/Dyson-Schwinger equation method, clearly is important. In order to provide input on bulk thermodynamics and cumulants of conserved charge distributions, that is suitable for the comparison of lattice QCD calculations to heavy-ion collision experiments, it is important to set up fin
- >
龍榆生:詞曲概論/大家小書
- >
姑媽的寶刀
- >
大紅狗在馬戲團(tuán)-大紅狗克里弗-助人
- >
二體千字文
- >
羅曼·羅蘭讀書隨筆-精裝
- >
自卑與超越
- >
隨園食單
- >
伊索寓言-世界文學(xué)名著典藏-全譯本