中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
>
機器人精度補償技術與應用(英文版)

包郵 機器人精度補償技術與應用(英文版)

出版社:科學出版社出版時間:2023-01-01
開本: B5 頁數: 244
中 圖 價:¥133.5(7.9折) 定價  ¥169.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

機器人精度補償技術與應用(英文版) 版權信息

  • ISBN:9787030740182
  • 條形碼:9787030740182 ; 978-7-03-074018-2
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:

機器人精度補償技術與應用(英文版) 本書特色

面向飛機裝配自動鉆鉚系統,探索可行可靠的機器人定位誤差補償方法,提升工業機器人絕對定位精度。

機器人精度補償技術與應用(英文版) 內容簡介

本書詳細地介紹了工業機器人精度補償的基礎理論和關鍵技術,主要內容包括:機器人運動學模型建立方法和機器人定位誤差分析,機器人運動學模型標定方法,機器人非運動學標定方法,機器人很優采樣點規劃方法等,并進一步闡述了飛機裝配自動制孔系統中工業機器人精度補償技術的應用方法,以驗證該技術的有效性。

機器人精度補償技術與應用(英文版) 目錄

Contents
Part I Theories
Chapter 1 Introduction 3
1.1 Background 3
1.2 What is robot accuracy 6
1.3 Why error compensation 8
1.4 Early investigations and insights 9
1.4.1 Offline calibration 10
1.4.2 Online feedback 16
1.5 Summary 19
Chapter 2 Kinematic modeling 21
2.1 Introduction 21
2.2 Pose description and transformation 21
2.2.1 Descriptions of position and posture 21
2.2.2 Translation and rotation 22
2.3 RPY angle and Euler angle 23
2.4 Forward kinematics 26
2.4.1 Link description and link frame 26
2.4.2 Link transformation and forward kinematic model 27
2.4.3 Forward kinematic model of a typical KUKA industrial robot 29
2.5 Inverse kinematics 33
2.5.1 Uniquely closed solution with joint constraints 34
2.5.2 Inverse kinematic model of a typical KUKA industrial robot 35
2.6 Error modeling 38
2.6.1 Differential transformation 38
2.6.2 Differential transformation of consecutive links 40
2.6.3 Kinematic error model 42
2.7 Summary 44
Chapter 3 Positioning error compensation using kinematic calibration 45
3.1 Introduction 45
3.2 Observability-index-based random sampling method 46
3.2.1 Observability index of robot kinematic parameters 46
3.2.2 Selection method of sampling points 48
3.3 Uniform-grid-based sampling method 54
3.3.1 Optimal grid size 54
3.3.2 Sampling point planning method 67
3.4 Kinematic calibration considering robot flexibility error 73
3.4.1 Robot flexibility analysis 74
3.4.2 Establishment of robot flexibility error model 76
3.4.3 Robot kinematic error model with flexibility error 77
3.5 Kinematic calibration using variable parametric error 79
3.6 Parameter identification using L-M algorithm 81
3.7 Verification of error compensation performance 83
3.7.1 Kinematic calibration with robot flexibility error 83
3.7.2 Error compensation using variable parametric error 84
3.8 Summary 91
Chapter 4 Error-similarity-based positioning error compensation 92
4.1 Introduction 92
4.2 Similarity of robot positioning error 93
4.2.1 Qualitative analysis of error similarity 93
4.2.2 Quantitative analysis of error similarity 94
4.2.3 Numerical simulation and discussion 96
4.3 Error compensation based on inverse distance weighting and error similarity 100
4.3.1 Inverse distance weighting interpolation method 101
4.3.2 Error compensation method combined IDW with error similarity 102
4.3.3 Numerical simulation and discussion 104
4.4 Error compensation based on linear unbiased optimal estimation and error similarity 106
4.4.1 Robot positioning error mapping based on error similarity 106
4.4.2 Linear unbiased optimal estimation of robot positioning error 109
4.4.3 Numerical simulation and discussion 112
4.4.4 Error compensation 116
4.5 Optimal sampling based on error similarity 116
4.5.1 Mathematical model of optimal sampling points 117
4.5.2 Multi-objective optimization and non-inferior solution 119
4.5.3 Genetic algorithm and NSGA-II 121
4.5.4 Multi-objective optimization of optimal sampling points of robots based on NSGA-II 128
4.6 Experimental verification 131
4.6.1 Experimental platform 131
4.6.2 Experimental verification of positioning error similarity 133
4.6.3 Experimental verification of error compensation based on inverse distance weighting and error similarity 141
4.6.4 Experimental verification of error compensation based on linear unbiased optimal estimation and error similarity 145
4.7 Summary 148
Chapter 5 Joint space closed-loop feedback 149
5.1 Introduction 149
5.2 Positioning error estimation 149
5.2.1 Error estimation model of Chebyshev polynomial 149
5.2.2 Identification of Chebyshev coefficients 153
5.2.3 Mapping model 154
5.3 Effect of joint backlash on positioning error 155
5.3.1 Variation law of joint backlash 155
5.3.2 Multi-directional positioning accuracy variation 158
5.4 Error compensation using feedforward and feedback loops 161
5.5 Experimental verification and analysis 162
5.5.1 Experimental setup 162
5.5.2 Error estimation experiment 163
5.5.3 Error compensation experiment 165
5.6 Summary 167
Chapter 6 Cartesian space closed-loop feedback 168
6.1 Introduction 168
6.2 Pose measurement using binocular visual sensor 168
6.2.1 Description of frame 168
6.2.2 Pose measurement principle based on binocular vision 170
6.2.3 Influence of the frame FE on measurement accuracy 174
6.2.4 Pose estimation using Kalman filtering 177
6.3 Vision-guided control system 178
6.4 Experimental verification 183
6.4.1 Experimental platform 183
6.4.2 Kalman-filtering-based estimation 184
6.4.3 No-load experiment 185
6.5 Summary 189
Part II Applications
Chapter 7 Applications in robotic drilling 193
7.1 Introducti
展開全部

機器人精度補償技術與應用(英文版) 節選

Part I Theories Chapter 1 Introduction 1.1 Background Currently, as production resources are desired to be capable of rapidly reacting to variations in the market environment, and showing flexibility and efficiency, the requirements for high-precision and flexible manufacturing equipment have been continually increasing in various industrial plants. Industrial robots, which incorporate multiple technologies such as computer science, mechanical engineering, electronic engineering, artificial intelligence, information sensing technology, and control theory, are the product of multi-disciplinary intersections. With the maturity of industrial robot technology, it has become a standard equipment widely used in the industrial automation industry, and its technological development level has also become an important symbol of a country’s level of industrial automation. The deep integration of robot technology and modern manufacturing technology will bring new vitality to existing products and technologies, enhance the comprehensive competitiveness of enterprises, and alleviate the crisis of labor shortage. Recently, due to their high degree of automation, flexibility and adaptability, industrial robots have been widely used in many traditional machining and manufacturing fields. As an example, in the electronic and automotive industries, robots have become a necessary tool for production owing to the variety and quantity of products. There are three reasons why robots are widely used in industrial countries: the first is to reduce labor production costs; the second is to increase labor productivity; the third and most important is to meet the needs of industrialization transformation. With the improvement of the technical level of industrial robots, they have begun to enter the high-precision manufacturing fields such as aerospace manufacturing, microprocessing, and biomedicine. Since the 1990s, the main robot production countries have already developed a robot flexible integrated system for a certain industrial field. Taking industrial robots as the main body, with peripheral manufacturing equipment and related software, forming a robot integrated system that meets a certain hightech manufacturing industry, such as robotic drilling and riveting, robotic welding and robotic fiber placement, etc., will definitely become the development direction of the manufacturing industry and the robot industry. As the leading industry in the manufacturing fields, aviation manufacturing has always been a strategic industry for the national economy and national defense construction. In recent years, the aircraft manufacturing industry has put forward the requirements of high quality, high efficiency, low cost and adaptation to small-batch and multi-model products for aircraft assembly technology. Aircraft assembly is a process in which aircraft parts or components are combined and connected to form higher-level assemblies or complete aircraft according to the design requirements. It is an extremely important link in the aircraft manufacturing process. So far, aircraft assembly technology has experienced a development process from manual assembly, semi-automatic assembly, automated assembly to flexible assembly. In the assembly process of the aircraft, due to the large size, the complex shape, and the large number of parts and connections of the product, the workload accounts for about 40% to 50% of the total workload. Improving the quality and efficiency of aircraft assembly has become one of the research focuses of today’s aviation manufacturing industry. At present, in the aviation manufacturing industry, drilling and riveting are still dominated by manual operations, which have low work efficiencies as well as unstable assembly qualities. Especially for advanced aircrafts, manual operations have been unable to meet the requirements of technical indicators such as positioning accuracy and normal accuracy of connecting holes. The use of automatic drilling and riveting technology has become an inevitable choice for aircraft assembly today, where the automatic drilling and riveting system based on industrial robots is a current research hot spot. As a kind of automatic equipment integrating advanced technology, industrial robots are very suitable for use in aircraft automatic assembly, e.g., drilling, riveting, milling, grinding, and fiber placement, as shown in Fig.1.1. Compared with the large and ex-pensive automatic drilling and riveting machines based on CNC machine tools, industrial robots have the advantages of high flexibility, high efficiency, and low manufacturing and maintenance costs. Some giants in the aerospace field have also already developed many robotic aircraft assembly systems, e.g., the Boeing 777 airframe assembly line by KUKA and Boeing (Fig.1.2), the early RACE (robot assembly cell) robotic automatic drilling and riveting system and the POWER RACE system by BROETJE Inc

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 不锈钢发酵罐_水果酒发酵罐_谷物发酵罐_山东誉诚不锈钢制品有限公司 | 聚合氯化铝厂家-聚合氯化铝铁价格-河南洁康环保科技 | 冷却塔厂家_冷却塔维修_冷却塔改造_凉水塔配件填料公司- 广东康明节能空调有限公司 | 合肥网络推广_合肥SEO网站优化-安徽沃龙First | 工业硝酸钠,硝酸钠厂家-淄博「文海工贸」 | 科普仪器菏泽市教育教学仪器总厂 | 便携式XPDM露点仪-在线式防爆露点仪-增强型烟气分析仪-约克仪器 冰雕-冰雪世界-大型冰雕展制作公司-赛北冰雕官网 | 齿轮减速机_齿轮减速电机-VEMT蜗轮蜗杆减速机马达生产厂家瓦玛特传动瑞环机电 | 模具ERP_模具管理系统_模具mes_模具进度管理_东莞市精纬软件有限公司 | 汽车整车综合环境舱_军标砂尘_盐雾试验室试验箱-无锡苏南试验设备有限公司 | _网名词典_网名大全_qq网名_情侣网名_个性网名 | 济南玻璃安装_济南玻璃门_济南感应门_济南玻璃隔断_济南玻璃门维修_济南镜片安装_济南肯德基门_济南高隔间-济南凯轩鹏宇玻璃有限公司 | 净化车间_洁净厂房_净化公司_净化厂房_无尘室工程_洁净工程装修|改造|施工-深圳净化公司 | 激光内雕_led玻璃_发光玻璃_内雕玻璃_导光玻璃-石家庄明晨三维科技有限公司 激光内雕-内雕玻璃-发光玻璃 | EDLC超级法拉电容器_LIC锂离子超级电容_超级电容模组_软包单体电容电池_轴向薄膜电力电容器_深圳佳名兴电容有限公司_JMX专注中高端品牌电容生产厂家 | CPSE安博会| 超声波清洗机_细胞破碎仪_实验室超声仪器_恒温水浴-广东洁盟深那仪器 | 成都茶楼装修公司 - 会所设计/KTV装修 - 成都朗煜装饰公司 | 上海办公室装修,办公楼装修设计,办公空间设计,企业展厅设计_写艺装饰公司 | 柔性输送线|柔性链板|齿形链-上海赫勒输送设备有限公司首页[输送机] | 华禹护栏|锌钢护栏_阳台护栏_护栏厂家-华禹专注阳台护栏、楼梯栏杆、百叶窗、空调架、基坑护栏、道路护栏等锌钢护栏产品的生产销售。 | 广州活动策划公司-15+年专业大型公关活动策划执行管理经验-睿阳广告 | 流水线电子称-钰恒-上下限报警电子秤-上海宿衡实业有限公司 | 塑料薄膜_PP薄膜_聚乙烯薄膜-常州市鑫美新材料包装厂 | 专注提供国外机电设备及配件-工业控制领域一站式服务商-深圳市华联欧国际贸易有限公司 | 冷热冲击试验箱_温度冲击试验箱价格_冷热冲击箱排名_林频厂家 | 爱佩恒温恒湿测试箱|高低温实验箱|高低温冲击试验箱|冷热冲击试验箱-您身边的模拟环境试验设备技术专家-合作热线:400-6727-800-广东爱佩试验设备有限公司 | 考勤系统_人事考勤管理系统_本地部署BS考勤系统_考勤软件_天时考勤管理专家 | 锥形螺带干燥机(新型耙式干燥机)百科-常州丰能干燥工程 | 直流电能表-充电桩电能表-导轨式电能表-智能电能表-浙江科为电气有限公司 | 点焊机-缝焊机-闪光对焊机-电阻焊设备生产厂家-上海骏腾发智能设备有限公司 | 不锈钢拉手厂家|浴室门拉手厂家|江门市蓬江区金志翔五金制品有限公司 | 废水处理-废气处理-工业废水处理-工业废气处理工程-深圳丰绿环保废气处理公司 | 流量卡中心-流量卡套餐查询系统_移动电信联通流量卡套餐大全 | 压砖机_电动螺旋压力机_粉末成型压力机_郑州华隆机械tel_0371-60121717 | 小型铜米机-干式铜米机-杂线全自动铜米机-河南鑫世昌机械制造有限公司 | 升降炉_真空气氛炉_管式电阻炉厂家-山东中辰电炉有限公司 | 三防漆–水性三防漆–水性浸渍漆–贝塔三防漆厂家 | 新型锤式破碎机_新型圆锥式_新型颚式破碎机_反击式打沙机_锤式制砂机_青州建源机械 | hc22_hc22价格_hc22哈氏合金—东锜特殊钢 | 防火阀、排烟防火阀、电动防火阀产品生产销售商-德州凯亿空调设备有限公司 |