掃一掃
關注中圖網
官方微博
本類五星書更多>
-
>
公路車寶典(ZINN的公路車維修與保養秘籍)
-
>
晶體管電路設計(下)
-
>
基于個性化設計策略的智能交通系統關鍵技術
-
>
花樣百出:貴州少數民族圖案填色
-
>
山東教育出版社有限公司技術轉移與技術創新歷史叢書中國高等技術教育的蘇化(1949—1961)以北京地區為中心
-
>
鐵路機車概要.交流傳動內燃.電力機車
-
>
利維坦的道德困境:早期現代政治哲學的問題與脈絡
航天器姿態控制 一種線性矩陣不等式方法 版權信息
- ISBN:9787030719782
- 條形碼:9787030719782 ; 978-7-03-071978-2
- 裝幀:一般膠版紙
- 冊數:暫無
- 重量:暫無
- 所屬分類:>
航天器姿態控制 一種線性矩陣不等式方法 內容簡介
本書凝聚了作者在航天器姿態控制領域近十年的原創性研究成果,系統研究了多源復雜擾動下姿態穩定控制方法。全書共11章。第1章對線性矩陣不等式方法與航天器姿態動力學進行了介紹,為后續控制系統設計奠定理論基礎;第2—6章介紹了剛體航天器姿態穩定控制方法,主要包括:狀態反饋非脆弱控制、動態輸出反饋非脆弱控制、基于中間狀態觀測器的容錯時滯控制與容錯非脆弱控制,以及基于干擾觀測器的輸入受限控制;第7—9章介紹了柔性航天器姿態穩定控制方法,主要包括:具有極點配置約束的改進混合H2/H∞控制、非脆弱H∞控制,以及基于主動振動抑制的抗干擾控制;第10章介紹了航天器混沌姿態同步跟蹤控制方法,并在第11章給出了欠驅動混沌姿態角速度穩定控制方法供讀者參考。本書可供航空航天、機械電子及控制相關專業的高等院校本科生和研究生學習參考,也是相關領域科研工作者和工程技術人員查閱或教學的有效工具。
航天器姿態控制 一種線性矩陣不等式方法 目錄
Contents
Preface
1.Introduction of basic knowledge
1.1 Linear matrix inequalities
1.1.1 What are linear matrix inequalities?
1.1.2 Useful lemmas for linear matrix inequalities
1.1.3 Advantages of linear matrix inequalities
1.1.4 Some standard linear matrix inequalitie problems
1.2 Spacecraft attitude kinematics and dynamics
1.2.1 Attitude representations
1.2.2 Attitude kinematics
1.2.3 Attitude dynamics
References
2.State feedback nonfragile control
2.1 Introduction
2.2 Problem formulation
2.2.1 Attitude dynamics modeling
2.2.2 Control objective
2.3 State feedback nonfragile control law
2.3.1 Some lemmas
2.3.2 Sufficient conditions under additive perturbation
2.3.3 Sufficient conditions under multiplicative perturbation
2.4 Simulation test
2.4.1 Simulation results under additive perturbation
2.4.2 Simulation results under multiplicative perturbation
2.4.3 Simulation results using a mixed H2/HN controller
2.5 Conclusions
References
3.Dynamic output feedback nonfragile control
3.1 Introduction
3.2 Problem formulation
3.2.1 Attitude system description
3.2.2 Nonfragile control problem
3.2.3 Control objective
3.3 Dynamic output feedback nonfragile control law design
3.3.1 Some lemmas
3.3.2 Controller design under additive perturbation
3.3.3 Controller design under multiplicative perturbation
3.3.4 Controller design under coexisting additive and multiplicative perturbations
3.4 Simulation test
3.4.1 Simulation results under additive perturbation
3.4.2 Simulation results under multiplicative perturbation
3.4.3 Simulation results under coexisting additive and multiplicative perturbations
3.5 Conclusions
References
4.Observer-based fault tolerant delayed control
4.1 Introduction
4.2 Problem formulation
4.2.1 Attitude system description
4.2.2 Control objective
4.3 Observer-based fault tolerant control scheme
4.3.1 Intermediate observer design
4.3.2 Delayed controller design
4.3.3 Control solution
4.4 Simulation test
4.4.1 Simulation results using the proposed controller
4.4.2 Simulation results using the prediction-based sampled-dataHN controller
4.4.3 Comparison analysis using different controllers
4.5 Conclusions
References
5.Observer-based fault tolerant nonfragile control
5.1 Introduction
5.2 Problem formulation
5.2.1 Attitude system description
5.2.2 Stochastically intermediate observer design
5.2.3 Nonfragile controller design
5.2.4 Control objective
5.3 Feasible solution for both cases
5.3.1 Some lemmas
5.3.2 Sufficient conditions under additive perturbation
5.3.3 Sufficient conditions under multiplicative perturbation
5.4 Simulation test
5.4.1 Comparison analysis under additive perturbation
5.4.2 Comparison analysis under multiplicative perturbation
5.5 Conclusions
References
6.Disturbance observer-based controlwith input MRCs
6.1 Introduction
6.2 Problem formulation
6.2.1 Attitude system description
6.2.2 Control objective
6.3 Controller design and analysis
6.3.1 Some lemmas
6.3.2 Coexisting conditions for observer and controller gains
6.3.3 Proof and analysis
6.4 Simulation test
6.4.1 Nonzero angular rates
6.4.2 Zero angular rates
6.4.3 Evaluation indices for the three conditions
6.4.4 Parametric influence on control performance
6.5 Conclusions
References
7.Improved mixed H2/HN control with poles assignment constraint
7.1 Introduction
7.2 Problem formulation
7.2.1 Flexible spacecraft dynamics with two bending modes
7.2.2 HN and H2 performance constraint
7.2.3 Poles assignment
7.2.4 Control objective
7.3 Improved mixed H2/HN control law
7.3.1 Some lemmas
7.3.2 H2 control
7.3.3 Mixed H2/HN control
7.4 Simulation test
7.4.1 Simulation results using static output feedback controller
7.4.2 Simulation results using improved mixed H2/HN controller
7.4.3 Simulation results using a traditional mixed H2/HN controller
7.4.4 Comparison analysis using different controllers
7.5 Conclusions
References
8.Nonfragile HN controlwith input constraints
8.1 Introduction
8.2 Problem formulation
8.2.1 Attitude system description of flexible spacecraft
8.2.2 Passive and active vibration suppression cases
8.2.3 Brief introduction on piezoelectric actuators
8.2.4 Improved model and control objective
8.3 Nonfragile HN control law
8.3.1 Sufficient conditions under additive perturbation
8.3.2 Sufficient conditions under multiplicative perturbation
8.4 Simulation test
8.4.1 Comparisons of control performance under additive perturbation
8.4.2 Comparisons of control performance under multiplicative perturbation
8.4.3 Simulation comparison analysis
8.5 Conclusions
References
9.Antidisturbance controlwith active vibration suppression
9.1 Introduction
9.2 Problem formulation
9.2.1 Attitude dynamics modeling
9.2.2 Preliminaries
9.2.3 Control objective
9.3 Antidisturbance control law with input magnitude, and rate constraints
9.3.1 Stochastically intermediate observer design
9.3.2 Antidisturbance controller design
9.3.3 Sufficient conditions for uniform ultimate boundedness
9.3.4 Sufficient conditions for HN control strategy
9.3.5 Sufficient conditions for input magnitude, and rate constraints
9.4 Simulation test
9.4.1 Simulation results using an antidisturbance controller
9.4.2 Simulation results using a mixed H2/HN controller
9.5 Conclusions
References
10.Chaotic attitude trackingcontrol
10.1 Introduction
10.2 Problem formulation
10.2.1 Chaotic attitude dynamics
10.2.2 Chaotic system characteristics and chaotic attractor
10.2.3 Tracking error dynamics and control objective
10.3 Adaptive variable structure control law
10.4 Simulation test
10.5 Conclusions
References
11.Underactuatedchaotic attitude stabilization control
11.1 Introduction
11.2 Problem formulation
11.2.1 Chaotic attitude system description
11.2.2 Two examples of Chen and Lu systems
11.2.3 Control objective
11.3 Sliding mode control law
11.3.1 Reference trajectory design
11.3.2 Controller design
11.4 Simulation test
11.4.1 Simulation results for the failure of one actuator
11.4.2 Simulation results for failure of two actuators
11.5 Conclusions
References
Index
Preface
1.Introduction of basic knowledge
1.1 Linear matrix inequalities
1.1.1 What are linear matrix inequalities?
1.1.2 Useful lemmas for linear matrix inequalities
1.1.3 Advantages of linear matrix inequalities
1.1.4 Some standard linear matrix inequalitie problems
1.2 Spacecraft attitude kinematics and dynamics
1.2.1 Attitude representations
1.2.2 Attitude kinematics
1.2.3 Attitude dynamics
References
2.State feedback nonfragile control
2.1 Introduction
2.2 Problem formulation
2.2.1 Attitude dynamics modeling
2.2.2 Control objective
2.3 State feedback nonfragile control law
2.3.1 Some lemmas
2.3.2 Sufficient conditions under additive perturbation
2.3.3 Sufficient conditions under multiplicative perturbation
2.4 Simulation test
2.4.1 Simulation results under additive perturbation
2.4.2 Simulation results under multiplicative perturbation
2.4.3 Simulation results using a mixed H2/HN controller
2.5 Conclusions
References
3.Dynamic output feedback nonfragile control
3.1 Introduction
3.2 Problem formulation
3.2.1 Attitude system description
3.2.2 Nonfragile control problem
3.2.3 Control objective
3.3 Dynamic output feedback nonfragile control law design
3.3.1 Some lemmas
3.3.2 Controller design under additive perturbation
3.3.3 Controller design under multiplicative perturbation
3.3.4 Controller design under coexisting additive and multiplicative perturbations
3.4 Simulation test
3.4.1 Simulation results under additive perturbation
3.4.2 Simulation results under multiplicative perturbation
3.4.3 Simulation results under coexisting additive and multiplicative perturbations
3.5 Conclusions
References
4.Observer-based fault tolerant delayed control
4.1 Introduction
4.2 Problem formulation
4.2.1 Attitude system description
4.2.2 Control objective
4.3 Observer-based fault tolerant control scheme
4.3.1 Intermediate observer design
4.3.2 Delayed controller design
4.3.3 Control solution
4.4 Simulation test
4.4.1 Simulation results using the proposed controller
4.4.2 Simulation results using the prediction-based sampled-dataHN controller
4.4.3 Comparison analysis using different controllers
4.5 Conclusions
References
5.Observer-based fault tolerant nonfragile control
5.1 Introduction
5.2 Problem formulation
5.2.1 Attitude system description
5.2.2 Stochastically intermediate observer design
5.2.3 Nonfragile controller design
5.2.4 Control objective
5.3 Feasible solution for both cases
5.3.1 Some lemmas
5.3.2 Sufficient conditions under additive perturbation
5.3.3 Sufficient conditions under multiplicative perturbation
5.4 Simulation test
5.4.1 Comparison analysis under additive perturbation
5.4.2 Comparison analysis under multiplicative perturbation
5.5 Conclusions
References
6.Disturbance observer-based controlwith input MRCs
6.1 Introduction
6.2 Problem formulation
6.2.1 Attitude system description
6.2.2 Control objective
6.3 Controller design and analysis
6.3.1 Some lemmas
6.3.2 Coexisting conditions for observer and controller gains
6.3.3 Proof and analysis
6.4 Simulation test
6.4.1 Nonzero angular rates
6.4.2 Zero angular rates
6.4.3 Evaluation indices for the three conditions
6.4.4 Parametric influence on control performance
6.5 Conclusions
References
7.Improved mixed H2/HN control with poles assignment constraint
7.1 Introduction
7.2 Problem formulation
7.2.1 Flexible spacecraft dynamics with two bending modes
7.2.2 HN and H2 performance constraint
7.2.3 Poles assignment
7.2.4 Control objective
7.3 Improved mixed H2/HN control law
7.3.1 Some lemmas
7.3.2 H2 control
7.3.3 Mixed H2/HN control
7.4 Simulation test
7.4.1 Simulation results using static output feedback controller
7.4.2 Simulation results using improved mixed H2/HN controller
7.4.3 Simulation results using a traditional mixed H2/HN controller
7.4.4 Comparison analysis using different controllers
7.5 Conclusions
References
8.Nonfragile HN controlwith input constraints
8.1 Introduction
8.2 Problem formulation
8.2.1 Attitude system description of flexible spacecraft
8.2.2 Passive and active vibration suppression cases
8.2.3 Brief introduction on piezoelectric actuators
8.2.4 Improved model and control objective
8.3 Nonfragile HN control law
8.3.1 Sufficient conditions under additive perturbation
8.3.2 Sufficient conditions under multiplicative perturbation
8.4 Simulation test
8.4.1 Comparisons of control performance under additive perturbation
8.4.2 Comparisons of control performance under multiplicative perturbation
8.4.3 Simulation comparison analysis
8.5 Conclusions
References
9.Antidisturbance controlwith active vibration suppression
9.1 Introduction
9.2 Problem formulation
9.2.1 Attitude dynamics modeling
9.2.2 Preliminaries
9.2.3 Control objective
9.3 Antidisturbance control law with input magnitude, and rate constraints
9.3.1 Stochastically intermediate observer design
9.3.2 Antidisturbance controller design
9.3.3 Sufficient conditions for uniform ultimate boundedness
9.3.4 Sufficient conditions for HN control strategy
9.3.5 Sufficient conditions for input magnitude, and rate constraints
9.4 Simulation test
9.4.1 Simulation results using an antidisturbance controller
9.4.2 Simulation results using a mixed H2/HN controller
9.5 Conclusions
References
10.Chaotic attitude trackingcontrol
10.1 Introduction
10.2 Problem formulation
10.2.1 Chaotic attitude dynamics
10.2.2 Chaotic system characteristics and chaotic attractor
10.2.3 Tracking error dynamics and control objective
10.3 Adaptive variable structure control law
10.4 Simulation test
10.5 Conclusions
References
11.Underactuatedchaotic attitude stabilization control
11.1 Introduction
11.2 Problem formulation
11.2.1 Chaotic attitude system description
11.2.2 Two examples of Chen and Lu systems
11.2.3 Control objective
11.3 Sliding mode control law
11.3.1 Reference trajectory design
11.3.2 Controller design
11.4 Simulation test
11.4.1 Simulation results for the failure of one actuator
11.4.2 Simulation results for failure of two actuators
11.5 Conclusions
References
Index
展開全部
書友推薦
- >
月亮與六便士
- >
大紅狗在馬戲團-大紅狗克里弗-助人
- >
自卑與超越
- >
姑媽的寶刀
- >
回憶愛瑪儂
- >
朝聞道
- >
李白與唐代文化
- >
中國人在烏蘇里邊疆區:歷史與人類學概述
本類暢銷