中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
非均勻材料斷裂力學(英文版)

包郵 非均勻材料斷裂力學(英文版)

出版社:科學出版社出版時間:2022-10-01
開本: B5 頁數: 356
本類榜單:自然科學銷量榜
中 圖 價:¥134.3(7.5折) 定價  ¥179.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

非均勻材料斷裂力學(英文版) 版權信息

  • ISBN:9787030700711
  • 條形碼:9787030700711 ; 978-7-03-070071-1
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

非均勻材料斷裂力學(英文版) 本書特色

該書完善了模型建立的思想體系,闡明了區域無關積分模型對材料界面具有區域無關性的根源。

非均勻材料斷裂力學(英文版) 內容簡介

本書剖析非均勻材料斷裂特性、理論模型及仿真方法,從基礎理論到仿真方法多個層面提出了饒有特色的研究和工作思路。**章分析非均勻材料裂紋很好場特點,闡明材料非均勻性對材料裂紋很好場的影響機制;第二至四章提出一般屬性梯度功能材料(非均勻材料)的斷裂難題,拓展并完善非均質材料斷裂力學的理論體系;第五至七章提出區域無關積分(DII積分)方法,去除傳統斷裂力學模型對材料屬性連續性要求,提出設計區域無關積分的理論框架,解決長期以來阻礙含復雜界面非均勻材料斷裂力學研究發展的根本問題,拓展斷裂力學方法研究范圍。該書完善了模型建立的思想體系,闡明了區域無關積分模型對材料界面具有區域無關性的根源。

非均勻材料斷裂力學(英文版) 目錄

目錄
Contents
Preface
Chapter 1 Fundamental theory of fracture mechanics of nonhomogeneous
materials 1
1.1 Internal crack 2
1.1.1 Basic equations for nonhomogeneous materials 2
1.1.2 Crack-tip fields for homogeneous materials 3
1.1.3 Crack-tip fields for nonhomogeneous materials 6
1.1.4 Crack-tip fields for nonhomogeneous orthotropic materials 12
1.2 Interface crack 14
1.2.1 Crack-tip fields of an interface crack 14
1.2.2 Crack-tip fields of an interface crack between two nonhomogeneous media 19
1.3 Three-dimensional curved crack 23
1.3.1 Internal crack 23
1.3.2 Interface crack 25
References 26
Chapter 2 Exponential models for crack problems in nonhomogeneous materials 28
2.1 Crack model for nonhomogeneous materials with an arbitrarily oriented crack 29
2.1.1 Basic equations and boundary conditions 29
2.1.2 Full field solution for a crack in the nonhomogeneous medium 31
2.1.3 Stress intensity factors (SIFs) and strain energy release rate (SERR) 36
2.2 Crack problems in nonhomogeneous coating-substrate or double-layered structures 38
2.2.1 Interface crack in nonhomogeneous coating-substrate structures 38
2.2.2 Cross -interface crack parallel to the gradient of material properties 45
2.2.3 Arbitrarily oriented crack in a double-layered structure 54
2.3 Crack problems in orthotropic nonhomogeneous materials 69
2.3.1 Basic equations and boundary conditions 69
2.3.2 Solutions to stress and displacement fields 71
2.3.3 Crack-tip SIFs 77
2.4 Transient crack problem of a coating-substrate structure 78
2.4.1 Basic equations and boundary conditions 78
2.4.2 Solutions to stress and displacement fields 79
2.4.3 Crack-tip SIFs 84
2.5 Representative examples 85
2.5.1 Example 1: Arbitrarily oriented crack in an infinite nonhomogeneous medium 85
2.5.2 Example 2: Interface crack between the coating and the substrate 88
2.5.3 Example 3: Crossing-interface crack perpendicular to the interface in a double-layered structure 89
2.5.4 Example 4: Inclined crack crossing the interface 94
2.5.5 Example 5: Vertical crack in a nonhomogeneous coating-substrate structure subjected to impact loading 96
Appendix 2A 98
References 99
Chapter 3 General model for nonhomogeneous materials with general elastic properties 101
3.1 Piecewise-exponential model for the mode I crack problem 102
3.1.1 Piecewise-exponential model (PE model) 102
3.1.2 Solutions to stress and displacement fields 105
3.1.3 Crack-tip SIFs 111
3.2 PE model for mixed-mode crack problem 112
3.2.1 Basic equations and boundary conditions 112
3.2.2 Solutions to stress and displacement fields 114
3.2.3 Crack-tip SIFs 119
3.3 PE model for dynamic crack problem 119
3.3.1 Basic equations and boundary conditions 119
3.3.2 Solutions to stress and displacement fields 123
3.3.3 Crack-tip SIFs 126
3.4 Representative examples 127
3.4.1 Example 1: Mode I crack problem for nonhomogeneous materials with general elastic properties 127
3.4.2 Example 2: Mixed-mode crack problem for nonhomogeneous materials with general elastic properties and an arbitrarily oriented crack 134
3.4.3 Example 3: Dynamic Mode I crack problem for nonhomogeneous materials with general elastic properties 139
Appendix 3A 145
References 151
Chapter 4 Fracture mechanics of nonhomogeneous materials based on piecewise-exponential model 153
4.1 Thermomechanical crack models of nonhomogeneous materials 154
4.1.1 Crack model for nonhomogeneous materials under steady thermal loads 154
4.1.2 Crack model for nonhomogeneous materials under thermal shock load 157
4.2 Viscoelastic crack model of nonhomogeneous materials 170
4.2.1 The correspondence principle for viscoelastic FGMs 170
4.2.2 Viscoelastic models for nonhomogeneous materials 173
4.2.3 PE model for the viscoelastic nonhomogeneous materials 174
4.3 Crack model for nonhomogeneous materials with stochastic properties 177
4.3.1 Stochastic micromechanics-based model for effective properties 177
4.3.2 Probabilistic characteristics of effective properties at transition region 182
4.3.3 Crack in nonhomogeneous materials with stochastic mechanical properties 183
4.4 Examples 188
4.4.1 Example 1: Steady thermomechanical crack problem 188
4.4.2 Example 2: Viscoelastic crack problem 195
4.4.3 Example 3: Crack problem in FGMs with stochastic mechanical properties 198
References 202
Chapter 5 Fracture of nonhomogeneous materials with complex interfaces 205
5.1 Interaction integral (I-integral) 207
5.1.1 J-integral 207
5.1.2 I-integral 208
5.1.3 Auxiliary field 208
5.1.4 Extraction of the SIFs 210
5.2 Domain-independent I-integral (DII-integral) 211
5.2.1 Domain form of the I-integral 211
5.2.2 DII-integral 214
5.3 DII-integral for orthotropic materials 220
5.4 Consideration of dynamic process 223
5.5 Calculation of the T-st
展開全部

非均勻材料斷裂力學(英文版) 節選

Chapter 1 Fundamental theory of fracture mechanics of nonhomogeneous materials Nonhomogeneous materials either exist naturally or are used intentionally to attain a required structural performance, such as bones, bamboo, shells,masonry composed of crushed stone, particulate composite materials, fiber-reinforced composite materials, etc. Nonhomogeneous materials are usually formed of two or more constituent phases with a variable composition, and they are prone to crack propagation during use which is due to the defects (holes, microcracks, debonding) introduced during manufacturing process. In recent decades,studies on fracture mechanics of nonhomoeneous materials have been carried out to ensure their reliable applications. To facilitate theoretical analysis,the interfaces between components are ignored, and the nonhomogeneous material is equivalent to a material with continuous macroscopic properties. This approach has been widely used in the fracture mechanics analysis of nonhomogeneous in the past few decades. Recently, due to the rapid development of computer technology,the real properties of components and interface conditions between components have been considered. This chapter will show the images of the near-tip field of a crack in nonhomogeneous material. Please note that throughout this book, an interface crack refers to the crack located along the interface between two neighboring materials while an internal crack refers to the crack with two surfaces located in the same materials. In addition,an embedded crack means that the crack is completely in a body, while an edge crack means that the crack intersects with the edge of the body. As a result,an embedded crack has two tips, while an edge crack has only one tip in the two-dimensional case. 1.1 Internal crack 1.1.1 Basic equations for nonhomogeneous materials A distinctive feature of nonhomogeneous materials is that the material parameters vary with coordinates. Taking an isotropic nonhomogeneous material as an example, the Young’s modulus E and Poisson’s ratio v need to be expressed respectively as E = E(x), v = v(x) (1.1) where jc denotes the coordinate vector, which is given by. The readers should remember the Eq. (1.1) firmly for nonhomogeneous materials. That is, even if only a single symbol E appears in some expression, it is usually not a constant but a function E(x) for nonhomogeneous materials. This is very important in the following study on nonhomogeneous materials. Then, the constitutive equation for the isotropic nonhomogeneous material is given in polar coordinate system by (1-2) where eap and aap represent the components of strain and stress, respectively,is the shear modulus, and fc(x) is the Kolosov constant defined by following formula: The symbol 8ap is the Kronecker delta function and given by In addition, the elastic fields need to satisfy the strain-displacement relations: (1.3) and the equilibrium equations: (1.4) This chapter will discuss the crack-tip fields in this frame. 1.1.2 Crack-tip fields for homogeneous materials For an internal crack in a homogeneous elastic solid, the stress has a singularity of r~in, as shown in Fig. 1.1, where r represents the distance from the current point to the crack tip. As r tends to be zero, the stress tends to be infinite. Williams (1957) first provided the crack-tip fields by using the eigenfunction expansion technique. The near-tip displacements and stresses of a two-dimensional internal crack are given by (1.5) (1.6) The parameter V2ttt and llnr are mode-I and mode- II stress intensity factors (SIFs),showing tensile and shear effects near the crack tip. Generally, the stress intensity factor depends on the material properties, geometry and loading conditions. T represents the constant term of the stress crn , known as the T-stress. The angular functions of the stress and displacement are given by (Gdoutos,2005) (1.7) (1.8) In order to give readers an intuitive impression of stress distributions with respect to the angle 0, Fig. 1.2 provides the stress angular functions in Eq. (1.7). Here, the angular function can be regarded as the stresses on the circle of ,II denote opening and sliding crack modes, respectively. 1.1.3 Crack-tip fields for nonhomogeneous materials Eischen (1987) extended the eigenfunction expansion technique to derive the crack-tip fields of nonhomogeneous materials with continuously differentiable properties. For a traction-free crack, the stress equilibrium equations are satisfied identically by an Airy stress function as (1.9) (1.10) one obtains the following equation governing the stress function for generalized plane stress condition (Eischen, 1987):

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 档案密集柜_手动密集柜_智能密集柜_内蒙古档案密集柜-盛隆柜业内蒙古密集柜直销中心 | 袋式过滤器,自清洗过滤器,保安过滤器,篮式过滤器,气体过滤器,全自动过滤器,反冲洗过滤器,管道过滤器,无锡驰业环保科技有限公司 | 老房子翻新装修,旧房墙面翻新,房屋防水补漏,厨房卫生间改造,室内装潢装修公司 - 一修房屋快修官网 | 浙江红酒库-冰雕库-气调库-茶叶库安装-医药疫苗冷库-食品物流恒温恒湿车间-杭州领顺实业有限公司 | 云南丰泰挖掘机修理厂-挖掘机维修,翻新,再制造的大型企业-云南丰泰工程机械维修有限公司 | 私人别墅家庭影院系统_家庭影院音响_家庭影院装修设计公司-邦牛影音 | 蔬菜配送公司|蔬菜配送中心|食材配送|饭堂配送|食堂配送-首宏公司 | 挤出机_橡胶挤出机_塑料挤出机_胶片冷却机-河北伟源橡塑设备有限公司 | 报警器_家用防盗报警器_烟雾报警器_燃气报警器_防盗报警系统厂家-深圳市刻锐智能科技有限公司 | 中开泵,中开泵厂家,双吸中开泵-山东博二泵业有限公司 | 隔离变压器-伺服变压器--输入输出电抗器-深圳市德而沃电气有限公司 | atcc网站,sigma试剂价格,肿瘤细胞现货,人结肠癌细胞株购买-南京科佰生物 | 超声波_清洗机_超声波清洗机专业生产厂家-深圳市好顺超声设备有限公司 | 机制砂选粉机_砂石选粉机厂家-盐城市助成粉磨科技有限公司 | ph计,实验室ph计,台式ph计,实验室酸度计,台式酸度计 | 英超直播_英超免费在线高清直播_英超视频在线观看无插件-24直播网 | 工业rfid读写器_RFID工业读写器_工业rfid设备厂商-ANDEAWELL | 密度电子天平-内校-外校电子天平-沈阳龙腾电子有限公司 | 电动高尔夫球车|电动观光车|电动巡逻车|电动越野车厂家-绿友机械集团股份有限公司 | 层流手术室净化装修-检验科ICU改造施工-华锐净化工程-特殊科室建设厂家 | 搪瓷搅拌器,搪玻璃搅拌器,搪玻璃冷凝器_厂家-淄博越宏化工设备 | 北京网络营销推广_百度SEO搜索引擎优化公司_网站排名优化_谷歌SEO - 北京卓立海创信息技术有限公司 | 河南卓美创业科技有限公司-河南卓美防雷公司-防雷接地-防雷工程-重庆避雷针-避雷器-防雷检测-避雷带-避雷针-避雷塔、机房防雷、古建筑防雷等-山西防雷公司 | 烟气换热器_GGH烟气换热器_空气预热器_高温气气换热器-青岛康景辉 | 盐水蒸发器,水洗盐设备,冷凝结晶切片机,转鼓切片机,絮凝剂加药系统-无锡瑞司恩机械有限公司 | 冷却塔减速机器_冷却塔皮带箱维修厂家_凉水塔风机电机更换-广东康明冷却塔厂家 | 北京模型公司-军事模型-工业模型制作-北京百艺模型沙盘公司 | 橡胶接头|可曲挠橡胶接头|橡胶软接头安装使用教程-上海松夏官方网站 | 复合土工膜厂家|hdpe防渗土工膜|复合防渗土工布|玻璃纤维|双向塑料土工格栅-安徽路建新材料有限公司 | 长沙一级消防工程公司_智能化弱电_机电安装_亮化工程专业施工承包_湖南公共安全工程有限公司 | 阿尔法-MDR2000无转子硫化仪-STM566 SATRA拉力试验机-青岛阿尔法仪器有限公司 | 储气罐,真空罐,缓冲罐,隔膜气压罐厂家批发价格,空压机储气罐规格型号-上海申容压力容器集团有限公司 | 螺杆式冷水机-低温冷水机厂家-冷冻机-风冷式-水冷式冷水机-上海祝松机械有限公司 | 【365公司转让网】公司求购|转让|资质买卖_股权转让交易平台 | 手持式线材张力计-套帽式风量罩-深圳市欧亚精密仪器有限公司 | 酒瓶_酒杯_玻璃瓶生产厂家_徐州明政玻璃制品有限公司 | led太阳能路灯厂家价格_风光互补庭院灯_农村市政工程路灯-中山华可路灯品牌 | 数显恒温油浴-电砂浴-高温油浴振荡器-常州迈科诺仪器有限公司 | 减速机_上海宜嘉减速机| 青岛侦探_青岛侦探事务所_青岛劝退小三_青岛调查出轨取证公司_青岛婚外情取证-青岛探真调查事务所 | 悬浮拼装地板_篮球场木地板翻新_运动木地板价格-上海越禾运动地板厂家 |