中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網(wǎng) 請(qǐng) | 注冊(cè)
> >
生成對(duì)抗網(wǎng)絡(luò):原理及圖像處理應(yīng)用

包郵 生成對(duì)抗網(wǎng)絡(luò):原理及圖像處理應(yīng)用

作者:朱秀昌
出版社:電子工業(yè)出版社出版時(shí)間:2022-08-01
開本: 其他 頁數(shù): 280
中 圖 價(jià):¥65.3(6.0折) 定價(jià)  ¥109.0 登錄后可看到會(huì)員價(jià)
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>
買過本商品的人還買了

生成對(duì)抗網(wǎng)絡(luò):原理及圖像處理應(yīng)用 版權(quán)信息

生成對(duì)抗網(wǎng)絡(luò):原理及圖像處理應(yīng)用 本書特色

如今,雖然GAN已經(jīng)衍生出許多的變體,商業(yè)應(yīng)用場景變得非常廣泛。但GAN本身仍然存在許多開放性研究問題需要繼續(xù)深入探索,如GAN的評(píng)估優(yōu)化,由于其訓(xùn)練過程本質(zhì)上是一個(gè)無監(jiān)督學(xué)習(xí)過程,導(dǎo)致有許多指標(biāo)在訓(xùn)練過程中雖然高,但是生成效果卻未必好,所以目前還很難找到一個(gè)比較客觀且可量化的評(píng)估指標(biāo);再如GAN的模型崩潰問題,盡管已經(jīng)有很多相關(guān)研究,但是對(duì)于高維數(shù)據(jù),這個(gè)問題還沒完全解決。本書對(duì)GAN進(jìn)行了系統(tǒng)闡述,為之后問題的解決奠定基礎(chǔ)。

生成對(duì)抗網(wǎng)絡(luò):原理及圖像處理應(yīng)用 內(nèi)容簡介

本書深入淺出地介紹了近年來AI領(lǐng)域中十分引人注目的新型人工神經(jīng)網(wǎng)絡(luò)――生成對(duì)抗網(wǎng)絡(luò)(GAN)的基本原理、網(wǎng)絡(luò)結(jié)構(gòu)及其在圖像處理領(lǐng)域中的應(yīng)用;同時(shí),分析了近年來在GAN訓(xùn)練、GAN質(zhì)量評(píng)估及多種改進(jìn)型GAN方面取得的進(jìn)展;在實(shí)踐方面,給出了基于Python的基本GAN編程實(shí)例。另外,本書還介紹了支撐GAN模型的基礎(chǔ)理論和相關(guān)算法,以使讀者更好地理解和掌握GAN技術(shù)。

生成對(duì)抗網(wǎng)絡(luò):原理及圖像處理應(yīng)用 目錄

第1章 緒論 1
1.1 從圖像處理到數(shù)字視覺 2
1.1.1 數(shù)字圖像技術(shù) 3
1.1.2 數(shù)字視覺技術(shù) 5
1.1.3 數(shù)字視覺的應(yīng)用 7
1.2 神經(jīng)網(wǎng)絡(luò)由淺入深 10
1.2.1 神經(jīng)網(wǎng)絡(luò)的發(fā)展 10
1.2.2 深度神經(jīng)網(wǎng)絡(luò) 11
1.2.3 深度學(xué)習(xí)的進(jìn)展 12
1.3 從概率生成到對(duì)抗生成 13
1.3.1 概率生成模型 14
1.3.2 概率分布比較 16
1.3.3 對(duì)抗生成模型 16
1.4 GAN的應(yīng)用 18
1.4.1 在圖像領(lǐng)域中的應(yīng)用 18
1.4.2 在其他領(lǐng)域中的應(yīng)用 20
第2章 數(shù)字圖像處理 22
2.1 數(shù)字圖像基礎(chǔ) 22
2.1.1 圖像的數(shù)學(xué)表示 22
2.1.2 圖像的數(shù)字化 23
2.1.3 數(shù)字圖像的表示 26
2.1.4 圖像的分辨率 28
2.2 傳統(tǒng)數(shù)字圖像處理 30
2.2.1 圖像采集和壓縮 30
2.2.2 圖像去噪和濾波 31
2.2.3 圖像增強(qiáng)和復(fù)原 32
2.2.4 圖像分割 33
2.2.5 圖像特征提取和目標(biāo)檢測 34
2.2.6 圖像變換和超分辨率重建 35
2.3 ANN圖像處理 36
2.3.1 圖像分類 36
2.3.2 目標(biāo)檢測與跟蹤 37
2.3.3 語義分割和實(shí)例分割 39
2.3.4 圖像生成 40
2.4 常用的圖像數(shù)據(jù)集 43
第3章 人工神經(jīng)網(wǎng)絡(luò) 49
3.1 ANN簡介 49
3.1.1 從生物到人工神經(jīng)元 50
3.1.2 從感知機(jī)到神經(jīng)網(wǎng)絡(luò) 51
3.1.3 從淺層到深度 54
3.1.4 ANN的特點(diǎn)和應(yīng)用 55
3.2 常見的ANN類型 57
3.2.1 RBF網(wǎng)絡(luò) 57
3.2.2 ART網(wǎng)絡(luò) 58
3.2.3 SOM網(wǎng)絡(luò) 59
3.2.4 波爾茲曼機(jī) 59
3.2.5 級(jí)聯(lián)相關(guān)網(wǎng)絡(luò) 61
3.3 ANN的關(guān)鍵技術(shù) 62
3.3.1 網(wǎng)絡(luò)類型 62
3.3.2 網(wǎng)絡(luò)訓(xùn)練 62
3.3.3 激活函數(shù) 64
3.3.4 驗(yàn)證和泛化 65
3.4 BP算法 66
3.4.1 數(shù)據(jù)的正向傳播 67
3.4.2 誤差的反向傳播 68
3.4.3 BP算法流程 70
3.4.4 BP算法的幾個(gè)問題 70
3.5 ANN的學(xué)習(xí)方式 71
3.5.1 有監(jiān)督學(xué)習(xí) 71
3.5.2 無監(jiān)督學(xué)習(xí) 72
3.5.3 半監(jiān)督學(xué)習(xí) 72
3.5.4 強(qiáng)化學(xué)習(xí) 73
第4章 GAN中常用的ANN 74
4.1 卷積神經(jīng)網(wǎng)絡(luò) 74
4.1.1 CNN的結(jié)構(gòu) 75
4.1.2 CNN的核心技術(shù) 76
4.1.3 CNN的訓(xùn)練和改進(jìn) 79
4.1.4 CNN一例 80
4.1.5 圖像卷積 81
4.2 循環(huán)神經(jīng)網(wǎng)絡(luò) 84
4.2.1 RNN的結(jié)構(gòu) 85
4.2.2 RNN與CNN的比較 85
4.3 變分自編碼器 86
4.3.1 自編碼器 86
4.3.2 VAE概述 87
4.4 深度殘差網(wǎng)絡(luò) 91
4.4.1 深度網(wǎng)絡(luò)的困境 91
4.4.2 殘差塊結(jié)構(gòu) 92
4.4.3 殘差塊的作用 92
4.4.4 ResNet的誤差反傳 93
第5章 相關(guān)算法 96
5.1 和圖像處理有關(guān)的算法 96
5.1.1 分類算法 96
5.1.2 聚類算法 104
5.1.3 降維算法 106
5.1.4 遷移學(xué)習(xí) 113
5.1.5 馬爾可夫鏈和HMM 115
5.2 和函數(shù)優(yōu)化有關(guān)的算法 120
5.2.1 *小二乘法 120
5.2.2 梯度下降法 121
5.2.3 EM算法 125
第6章 GAN基礎(chǔ) 129
6.1 GAN概要 130
6.1.1 GAN的數(shù)據(jù)生成 130
6.1.2 GAN的網(wǎng)絡(luò)結(jié)構(gòu) 133
6.1.3 GAN的優(yōu)勢和不足 137
6.2 數(shù)據(jù)分布及其轉(zhuǎn)換 139
6.2.1 圖像數(shù)據(jù)的高維分布 139
6.2.2 隱變量和隱空間 141
6.2.3 分布函數(shù)的轉(zhuǎn)換 143
6.3 生成模型與判別模型 145
6.3.1 生成模型 145
6.3.2 判別模型 149
6.3.3 生成模型和判別模型的關(guān)系 150
6.4 GAN的工作過程 152
6.4.1 納什均衡 153
6.4.2 對(duì)抗訓(xùn)練 154
6.4.3 訓(xùn)練流程 157
第7章 GAN的目標(biāo)函數(shù) 160
7.1 數(shù)據(jù)的信息熵 161
7.1.1 隨機(jī)變量 161
7.1.2 信息量和信息熵 164
7.1.3 交叉熵 166
7.2 數(shù)據(jù)分布的差異:散度 168
7.2.1 KL散度 168
7.2.2 JS散度 169
7.2.3 f散度 169
7.3 GAN目標(biāo)函數(shù)及其優(yōu)化 171
7.3.1 目標(biāo)函數(shù) 171
7.3.2 判別器優(yōu)化 178
7.3.3 生成器優(yōu)化 180
第8章 GAN的訓(xùn)練 182
8.1 GAN訓(xùn)練中常見的問題 183
8.1.1 收斂不穩(wěn)定問題 183
8.1.2 梯度消失問題 184
8.1.3 模式崩潰問題 189
8.2 提升GAN訓(xùn)練的穩(wěn)定性 192
8.2.1 選擇恰當(dāng)?shù)木W(wǎng)絡(luò)模型 192
8.2.2 選擇恰當(dāng)?shù)哪繕?biāo)函數(shù) 194
8.2.3 選擇恰當(dāng)?shù)膬?yōu)化算法 196
8.3 GAN訓(xùn)練中的常用技巧 198
8.3.1 數(shù)據(jù)規(guī)范化 198
8.3.2 學(xué)習(xí)率衰減 199
8.3.3 丟棄技術(shù) 200
8.3.4 批量規(guī)范化 203
8.3.5 激活函數(shù)的選擇 203
第9章 GAN的改進(jìn) 206
9.1 GAN的改進(jìn)之路 207
9.2 C GAN和info GAN 207
9.2.1 C GAN 207
9.2.2 info GAN 209
9.3 DC GAN 211
9.4 W GAN 213
9.5 Big GAN 214
第10章 GAN的圖像處理應(yīng)用 217
10.1 圖像生成 218
10.1.1 圖像生成的三種方式 218
10.1.2 幾種特殊的圖像生成 221
10.2 圖像超分辨率重建 221
10.3 圖像修復(fù) 222
10.4 圖像翻譯 224
10.4.1 圖像至圖像的翻譯 224
10.4.2 文本至圖像的翻譯 225
10.5 圖像風(fēng)格遷移 226
10.6 視頻預(yù)測 227
第11章 GAN的Python編程 228
11.1 Python編程語言 228
11.1.1 Python簡介 228
11.1.2 Python的特點(diǎn) 230
11.1.3 Python的應(yīng)用 232
11.2 常見的Python集成開發(fā)環(huán)境 233
11.3 深度學(xué)習(xí)框架 235
11.3.1 主流的深度學(xué)習(xí)框架 235
11.3.2 主流學(xué)習(xí)框架的比較 237
11.4 TensorFlow中的GAN編程 238
11.4.1 張量和張量流 239
11.4.2 Python的TensorFlow庫 242
11.4.3 TensorFlow的常用模塊 243
第12章 GAN圖像處理實(shí)例 245
12.1 1維GAN編程 245
12.1.1 1維GAN小程序 246
12.1.2 數(shù)據(jù)對(duì)齊 248
12.1.3 訓(xùn)練中的幾個(gè)問題 249
12.2 MNIST手寫數(shù)字的生成 249
12.2.1 GAN模型的訓(xùn)練程序 250
12.2.2 GAN模型的生成程序 254
12.2.3 訓(xùn)練程序的圖解 256
12.2.4 生成程序的圖解 257
展開全部

生成對(duì)抗網(wǎng)絡(luò):原理及圖像處理應(yīng)用 作者簡介

朱秀昌,男,1947年生,碩士,江蘇丹徒人。曾任南京郵電大學(xué)通信與信息工程學(xué)院教授,博士生導(dǎo)師,"江蘇省圖像處理與圖像通信重點(diǎn)實(shí)驗(yàn)室”主任。長期從事圖像和多媒體通信方面的科研和教學(xué)工作。曾主持完成了多項(xiàng)國家、省部級(jí)科研項(xiàng)目,主講了多門本科生和研究生的專業(yè)課程。先后在5個(gè)出版社編著出版了"數(shù)字圖像處理與圖像通信”等書籍17本,發(fā)表專業(yè)技術(shù)論文160余篇。

商品評(píng)論(0條)
暫無評(píng)論……
書友推薦
本類暢銷
返回頂部
中圖網(wǎng)
在線客服
主站蜘蛛池模板: 盘古网络技术有限公司| 泰安办公家具-泰安派格办公用品有限公司 | 安徽华耐泵阀有限公司-官方网站 安德建奇火花机-阿奇夏米尔慢走丝|高维|发那科-北京杰森柏汇 | 免费分销系统 — 分销商城系统_分销小程序开发 -【微商来】 | 安徽免检低氮锅炉_合肥燃油锅炉_安徽蒸汽发生器_合肥燃气锅炉-合肥扬诺锅炉有限公司 | 短信通106短信接口验证码接口群发平台_国际短信接口验证码接口群发平台-速度网络有限公司 | 无硅导热垫片-碳纤维导热垫片-导热相变材料厂家-东莞市盛元新材料科技有限公司 | 订做不锈钢_不锈钢定做加工厂_不锈钢非标定制-重庆侨峰金属加工厂 | 电销卡 防封电销卡 不封号电销卡 电话销售卡 白名单电销卡 电销系统 外呼系统 | 芝麻黑-芝麻黑石材厂家-永峰石业| 集装箱标准养护室-集装箱移动式养护室-广州璟业试验仪器有限公司 | 电伴热系统施工_仪表电伴热保温箱厂家_沃安电伴热管缆工业技术(济南)有限公司 | 变位机,焊接变位机,焊接变位器,小型变位机,小型焊接变位机-济南上弘机电设备有限公司 | 滚珠丝杆升降机_螺旋升降机_丝杠升降机-德迈传动 | IWIS链条代理-ALPS耦合透镜-硅烷预处理剂-上海顶楚电子有限公司 lcd条形屏-液晶长条屏-户外广告屏-条形智能显示屏-深圳市条形智能电子有限公司 | MES系统-WMS系统-MES定制开发-制造执行MES解决方案-罗浮云计算 | 铝合金电阻-无源谐波滤波器-上海稳达电讯设备厂 | 土壤养分检测仪_肥料养分检测仪_土壤水分检测仪-山东莱恩德仪器 大型多片锯,圆木多片锯,方木多片锯,板材多片锯-祥富机械有限公司 | 番茄畅听邀请码怎么输入 - Dianw8.com| 电梯装饰-北京万达中意电梯装饰有限公司| 石油/泥浆/不锈钢防腐/砂泵/抽砂泵/砂砾泵/吸砂泵/压滤机泵 - 专业石油环保专用泵厂家 | TPE_TPE热塑性弹性体_TPE原料价格_TPE材料厂家-惠州市中塑王塑胶制品公司- 中塑王塑胶制品有限公司 | CE认证_产品欧盟ROHS-REACH检测机构-商通检测 | 质检报告_CE认证_FCC认证_SRRC认证_PSE认证_第三方检测机构-深圳市环测威检测技术有限公司 | 油冷式_微型_TDY电动滚筒_外装_外置式电动滚筒厂家-淄博秉泓机械有限公司 | 汕头市盛大文化传播有限公司,www.11400.cc | 托盘租赁_塑料托盘租赁_托盘出租_栈板出租_青岛托盘租赁-优胜必达 | 微妙网,专业的动画师、特效师、CG模型设计师网站! - wmiao.com 超声波电磁流量计-液位计-孔板流量计-料位计-江苏信仪自动化仪表有限公司 | 广州网站建设_小程序开发_番禺网站建设_佛山网站建设_粤联网络 | 宽带办理,电信宽带,移动宽带,联通宽带,电信宽带办理,移动宽带办理,联通宽带办理 | 同步带轮_同步带_同步轮_iHF合发齿轮厂家-深圳市合发齿轮机械有限公司 | 香蕉筛|直线|等厚|弧形|振动筛|香蕉筛厂家-洛阳隆中重工 | 衢州装饰公司|装潢公司|办公楼装修|排屋装修|别墅装修-衢州佳盛装饰 | 快速门厂家批发_PVC快速卷帘门_高速门_高速卷帘门-广州万盛门业 快干水泥|桥梁伸缩缝止水胶|伸缩缝装置生产厂家-广东广航交通科技有限公司 | 转向助力泵/水泵/发电机皮带轮生产厂家-锦州华一精工有限公司 | 油罐车_加油机_加油卷盘_加油机卷盘_罐车人孔盖_各类球阀_海底阀等车用配件厂家-湖北华特专用设备有限公司 | 橡胶弹簧|复合弹簧|橡胶球|振动筛配件-新乡市永鑫橡胶厂 | 中央空调温控器_风机盘管温控器_智能_液晶_三速开关面板-中央空调温控器厂家 | 圆盘鞋底注塑机_连帮鞋底成型注塑机-温州天钢机械有限公司 | 二次元影像仪|二次元测量仪|拉力机|全自动影像测量仪厂家_苏州牧象仪器 | 钢丝绳探伤仪-钢丝绳检测仪-钢丝绳探伤设备-洛阳泰斯特探伤技术有限公司 |