中图网(原中国图书网):网上书店,尾货特色书店,30万种特价书低至2折!

歡迎光臨中圖網 請 | 注冊
> >
高超聲速飛行器平穩(wěn)滑翔動力學與制導(英文版)

包郵 高超聲速飛行器平穩(wěn)滑翔動力學與制導(英文版)

作者:陳萬春等
出版社:科學出版社出版時間:2022-03-01
開本: B5 頁數: 480
中 圖 價:¥210.0(7.5折) 定價  ¥280.0 登錄后可看到會員價
加入購物車 收藏
開年大促, 全場包郵
?新疆、西藏除外
本類五星書更多>

高超聲速飛行器平穩(wěn)滑翔動力學與制導(英文版) 版權信息

  • ISBN:9787030716378
  • 條形碼:9787030716378 ; 978-7-03-071637-8
  • 裝幀:一般膠版紙
  • 冊數:暫無
  • 重量:暫無
  • 所屬分類:>

高超聲速飛行器平穩(wěn)滑翔動力學與制導(英文版) 內容簡介

本書從平穩(wěn)滑翔的概念和基本理論-運動學、動力學和控制方程-平穩(wěn)滑翔彈道的動態(tài)特性-平穩(wěn)滑翔彈道的設計-基于平穩(wěn)滑翔理論的制導方法全面系統(tǒng)地介紹高超聲速飛行器再入平穩(wěn)機動滑翔動力學與制導技術,在理論深度和應用參考性方面有自己的特色。主要內容包括:平穩(wěn)滑翔再入動力學模型;平穩(wěn)滑翔彈道動態(tài)特性;彈道阻尼控制技術;基于平穩(wěn)滑翔的彈道優(yōu)化技術;基于平穩(wěn)滑翔的線性偽譜廣義標控脫靶量制導;平穩(wěn)滑翔彈道解析解;平穩(wěn)機動滑翔突防彈道設計。

高超聲速飛行器平穩(wěn)滑翔動力學與制導(英文版) 目錄

Contents
1 Introduction 1
1.1 Problem Description 1
1.2 Research Significance 2
1.3 Research Progress 4
References 8
2 Mathematical Fundamentals 11
2.1 Regular Perturbation Method 11
2.2 Singular Perturbation Method 13
2.3 Spectral Decomposition Method 16
2.3.1 Idempotent Matrix 16
2.3.2 Spectral Decomposition Theorem 16
2.3.3 Inference 17
2.3.4 Example 19
2.4 Pseudospectral Method 19
2.4.1 Introduction of Method 19
2.4.2 Pseudospectral Discrete Process 23
2.5 Linear Gauss Pseudospectral Model Predictive Control 33
References 38
3 Mathematical Modeling for Hypersonic Glide Problem 41
3.1 The Coordinate System Adopted in This Book 41
3.1.1 Geocentric Inertial Coordinate System (I) 41
3.1.2 Geographic Coordinate System (T) 41
3.1.3 Orientation Coordinate System (O) 42
3.1.4 Velocity Coordinate System (V) 42
3.1.5 Half-Velocity Coordinate System (H) 42
3.1.6 Body Coordinate System (B) 43
3.2 Transformation Between Coordinate Systems 43
3.2.1 Transformation Between the Orientation Coordinate System and the Half-Velocity Coordinate System 43
3.2.2 Transformation Between the Velocity Coordinate System and the Half-Velocity Coordinate System 43
3.2.3 Transformation Between the Velocity Coordinate System and the Body Coordinate System 44
3.2.4 Transformation Between the Body Coordinate System and the Half-Velocity Coordinate System 45
3.3 Dynamic Equations of Hypersonic Vehicle in Half-Velocity Coordinate System 45
3.3.1 Dynamics Equations of the Center of Mass in Half-Velocity Coordinate System 45
3.3.2 The Dynamic Equations of the Center of Mass of the Vehicle 48
3.3.3 Dynamic Equations of Hypersonic Gliding Vehicle Based on BTT Control 48
3.3.4 Dynamic Equations of Hypersonic Vehicle in Vertical Plane 49
3.3.5 Atmospheric Model 50
3.3.6 Aerodynamic Model 50
3.3.7 The Stagnation Point Heat Flow,Overload and Dynamic Pressure 50
4 Mathematical Description of Glide-Trajectory Optimization Problem 53
4.1 Mathematical Description for Optimal Control Problem 53
4.1.1 Performance Index of Optimal Control Problem 53
4.1.2 Description of Optimal Control Problem 54
4.1.3 The Minimum Principle 55
4.1.4 Final Value Performance Index of Time-Invariant Systems 56
4.1.5 Integral Performance Index of Time-Invariant Systems 57
4.1.6 Optimal Control Problem with Inequality Constraints 58
4.1.7 Methods for Solving Optimal Control Problems 58
4.2 Mathematical Description of Optimal Control Problem for Hypersonic Vehicle Entry Glide 61
4.2.1 Maximum Final Speed Problem 61
4.2.2 Maximum Range Problem 62
4.2.3 Shortest Time Problem 62
4.2.4 Optimal Trajectory Problem with Heating Rate Constraint 63
4.2.5 Optimal Trajectory Problem with Heating Rate and Load Factor Constraints 64
5 Indirect Approach to the Optimal Glide Trajectory Problem 65
5.1 Combined Optimization Strategy for Solving the Optimal Gliding Trajectory of Hypersonic Aircraft 67
5.1.1 Mathematical Model of Hypersonic Gliding 67
5.1.2 Necessary Conditions for Optimal Gliding Trajectory 68
5.1.3 Solving Two-Point Boundary Value Problem by Combination Optimization Strategy 69
5.1.4 Numerical Calculation Results 70
5.1.5 Conclusion 73
5.2 Trajectory Optimization of Transition Section of Gliding Hypersonic Flight Vehicle 74
5.2.1 Aerodynamic Data for the Transition Section 74
5.2.2 Unconstrained Trajectory of Maximum Terminal Velocity 75
5.2.3 Heat Flow Constrained Trajectory of Maximum Terminal Velocity 76
5.2.4 Solving the Two-Point Boundary Value Problem for the Transition Section 77
5.2.5 Optimizing the Transition Trajectory with Direct Method 77
5.2.6 Steps for Solving the Optimal Transition Trajectory 78
5.2.7 Transitional Trajectory Obtained by Indirect Method 81
5.3 The Maximum Range Gliding Trajectory of the Hypersonic Aircraft 84
5.3.1 Guess Initial Values for Optimal Control Problem by Direct Method 84
5.3.2 Indirect Method for Solving Optimal Control Problems 89
5.3.3 The Maximum Range Gliding Trajectory of the Hypersonic Aircraft 94
References 101
6 Direct Method for Gliding Trajectory Optimization Problem 103
6.1 Direct Method for Solving Optimal Control Problems 103
6.2 Direct Shooting Method 104
6.2.1 Direct Multiple Shooting Method 104
6.2.2 Direct Method of Discrete Control 105
6.2.3 Gradual Subdividing Optimization Strategy 106
6.3 Direct Collocation Method 107
6.3.1 General Form of Direct Collocation Method 107
6.3.2 Direct Transcription 108
6.3.3 Implicit Integral Method 109
6.3.4 Solving Optimal Trajectory Problems with NLP 110
6.4 Direct Collocating Method for Trajectory with Maximum Gliding Cross Range of Hypersonic Aircraft 111
6.4.1 Mathematical Model 111
6.4.2 Re-entry Flight Control Law with Given Angle of Attack Profile 113
6.4.3 Solution of Maximum Cross Range Problem by Direct Colloca
展開全部

高超聲速飛行器平穩(wěn)滑翔動力學與制導(英文版) 節(jié)選

Chapter 1 Introduction 1.1 Problem Description Hypersonic glide vehicle (HGV) is generally a near-space vehicle that can fly at a velocity of more than Mach number 5. It is characterized by high velocity, long flight distance and high heating rate. Therefore, through traditional methods, it is difficult to obtain the optimal trajectory satisfying various constraints for HGV. Reference [1] drew the conclusion that the maximum range flight scheme can be approximated by the maximum lift-to-drag ratio gliding flight. Hence, simulations of the maximum lift-to-drag ratio flight are carried out and the trajectory and heating rate profiles are shown in Figs. 1.1 and 1.2 respectively, where the initial altitude is 94 km, initial Mach number is 20.4 and initial flight-path angle is 0. As shown in Figs. 1.1 and 1.2, the maximum lift-to-drag ratio flight trajectory is a skipping gliding trajectory with a large range. Due to the severe oscillations of trajectory, the heating rate at the stagnation point cannot be controlled and the maximum heating rate may far exceed the endurance of the vehicle, thus leading to destructive damage to the vehicle structure. It can be seen from Fig. 1.2 that the maximum heating rate reaches 1400 W/cm2, which is far beyond the allowable peak heating rate of 650 W/cm2. The influences of the initial altitude and the initial Mach number on the maximum heating rate for the maximum lift-to-drag ratio flight are presented in Fig. 1.3. Fig. 1.3 shows the possibility that the maximum heating rate can be controlled below 650 W/cm2 at a certain initial height and Mach number. However, due to the constraints of each phase and the requirement of the maximum range, the initial altitude and the initial Mach number of the entry flight may not satisfy the heating rate constraint. This means that the constrained maximum range problem cannot be addressed by adopting the maximum lift-to-drag ratio gliding flight scheme directly. As a result, it is necessary to further study the optimal control problem under various constraints and propose a fast on-line guidance algorithm. Fig. 1.1 Trajectory of maximum lift-to-drag ratio flight Fig. 1.2 Heating rate of maximum lift-to-drag ratio flight 1.2Research Significance Owing to advance in long-range, high velocity, near-space flight, low detectability and strong maneuverability, HGV has been developed vigorously by many countries. With characteristics of high speed, wide range of speed variation and long range in entry phase, HGV shows strong maneuverability and wide maneuvering range. Because of its advantages in fast arrival and maneuverability, hypersonic glider is considered to be a re-entry vehicle with wide application prospect, which can achieve long-distance, fast and precise strike and force delivery. This book introduces the entry dynamic characteristics and various entry guidance methods for unpowered hypersonic gliding vehicle. The trajectory of hypersonic gliding vehicle can be generally divided into the ascending phase, transition phase, gliding phase and descending phase. Fig. 1.3 Profiles of maximum heating rate, initial altitude and initial Mach number corresponding to the maximum lift-to-drag ratio flight The ascending phase is similar to that of ballistic flight vehicle and carrier rocket, where rocket is used as the booster and has a comparatively mature technology. The transition phase has characteristics of high altitude and weak control ability, thus large angle of attack (AOA) and small bank angle control method are adopted here to guide the vehicle to the starting point of the gliding phase. And the flight mission of hypersonic gliding vehicle is mainly realized by the flight control in gliding phase and descending phase. During entry flight of hypersonic vehicle, the flight distance is long, the airspace is large, and the flight Mach number varies widely. Due to the continuous increase of heat during the long-range flight,the structure of the vehicle will be under great pressure. Therefore, the peak and accumulation value of heating rate should be fully considered in trajectory design and entry guidance, thus it is important to find a reasonable guidance method which can reduce the peak heating rate and total heat flux during the research. At the same time, the control of dynamic pressure is also very imperative. When the vehicle mainly flies in near space with small air density, if the dynamic pressure is too small, the rudder will not have the capacity to provide enough moment to stabilize the attitude of the vehicle. Moreover, in order to accomplish some specific missions, the gliding vehicle needs to drop down rapidly at the end of the descending phase,which may lead to large dynamic pressure and load factor. Large dynamic pressure will produce too much hinge moment for rudder structure to sustain, and large load factor will cause damage to some weak parts of the vehicle s

商品評論(0條)
暫無評論……
書友推薦
本類暢銷
編輯推薦
返回頂部
中圖網
在線客服
主站蜘蛛池模板: 气力输送设备_料封泵_仓泵_散装机_气化板_压力释放阀-河南锐驰机械设备有限公司 | 太平洋亲子网_健康育儿 品质生活| 禹城彩钢厂_钢结构板房_彩钢复合板-禹城泰瑞彩钢复合板加工厂 | 深圳离婚律师咨询「在线免费」华荣深圳婚姻律师事务所专办离婚纠纷案件 | 临海涌泉蜜桔官网|涌泉蜜桔微商批发代理|涌泉蜜桔供应链|涌泉蜜桔一件代发 | 网架支座@球铰支座@钢结构支座@成品支座厂家@万向滑动支座_桥兴工程橡胶有限公司 | 编织人生 - 权威手工编织网站,编织爱好者学习毛衣编织的门户网站,织毛衣就上编织人生网-编织人生 | 顺辉瓷砖-大国品牌-中国顺辉 | 艺术漆十大品牌_艺术涂料加盟代理_蒙太奇艺术涂料厂家品牌|艺术漆|微水泥|硅藻泥|乳胶漆 | 对辊破碎机-液压双辊式,强力双齿辊,四辊破碎机价格_巩义市金联机械设备生产厂家 | 西装定制/做厂家/公司_西装订做/制价格/费用-北京圣达信西装 | BHK汞灯-百科|上海熙浩实业有限公司 | 探鸣起名网-品牌起名-英文商标起名-公司命名-企业取名包满意 | 短信通106短信接口验证码接口群发平台_国际短信接口验证码接口群发平台-速度网络有限公司 | 耐酸碱胶管_耐腐蚀软管总成_化学品输送软管_漯河利通液压科技耐油耐磨喷砂软管|耐腐蚀化学软管 | 无锡不干胶标签,卷筒标签,无锡瑞彩包装材料有限公司 | 温州富欧金属封头-不锈钢封头厂家| 展厅设计-展馆设计-专业企业展厅展馆设计公司-昆明华文创意 | GAST/BRIWATEC/CINCINNATI/KARL-KLEIN/ZIEHL-ABEGG风机|亚喜科技 | 导电银胶_LED封装导电银胶_半导体封装导电胶厂家-上海腾烁 | 冷热冲击试验箱_温度冲击试验箱价格_冷热冲击箱排名_林频厂家 | 板式换网器_柱式换网器_自动换网器-郑州海科熔体泵有限公司 | 飞行者联盟-飞机模拟机_无人机_低空经济_航空技术交流平台 | 厦门ISO认证|厦门ISO9001认证|厦门ISO14001认证|厦门ISO45001认证-艾索咨询专注ISO认证行业 | 奥运星-汽车性能网评-提供个性化汽车资讯| 济南菜鸟驿站广告|青岛快递车车体|社区媒体-抖音|墙体广告-山东揽胜广告传媒有限公司 | 高低温老化试验机-步入式/低温恒温恒湿试验机-百科 | 雨水收集系统厂家-雨水收集利用-模块雨水收集池-徐州博智环保科技有限公司 | 苗木价格-苗木批发-沭阳苗木基地-沭阳花木-长之鸿园林苗木场 | 辐射色度计-字符亮度测试-反射式膜厚仪-苏州瑞格谱光电科技有限公司 | 美缝剂_美缝剂厂家_美缝剂加盟-地老板高端瓷砖美缝剂 | 儿童乐园|游乐场|淘气堡招商加盟|室内儿童游乐园配套设备|生产厂家|开心哈乐儿童乐园 | 首页_欧瑞传动官方网站--主营变频器、伺服系统、新能源、软起动器、PLC、HMI | 山东聚盛新型材料有限公司-纳米防腐隔热彩铝板和纳米防腐隔热板以及钛锡板、PVDF氟膜板供应商 | 深圳宣传片制作_产品视频制作_深圳3D动画制作公司_深圳短视频拍摄-深圳市西典映画传媒有限公司 | 进口消泡剂-道康宁消泡剂-陶氏消泡剂-大洋消泡剂 | 汽车水泵_汽车水泵厂家-瑞安市骏迪汽车配件有限公司 | 西安标准厂房_陕西工业厂房_西咸新区独栋厂房_长信科技产业园官方网站 | 济南网站建设_济南网站制作_济南网站设计_济南网站建设公司_富库网络旗下模易宝_模板建站 | 打造全球沸石生态圈 - 国投盛世 锂电混合机-新能源混合机-正极材料混料机-高镍,三元材料混料机-负极,包覆混合机-贝尔专业混合混料搅拌机械系统设备厂家 | 分光色差仪,测色仪,反透射灯箱,爱色丽分光光度仪,美能达色差仪维修_苏州欣美和仪器有限公司 |